Home
Class 12
MATHS
Evaluate : (i) int(1)/((1+tanx))dx (ii...

Evaluate :
(i) `int(1)/((1+tanx))dx` (ii) `int(1)/((1+cotx))dx`
(iii) `int((1-tanx)/(1+tanx))dx` (iv) `int(tanx)/((secx+cosx))dx`

Text Solution

Verified by Experts

(i) `int(1)/((1+tanx))dx=int(1)/((1+(sinx)/(cosx)))dx`
`=int(cosx)/((cosx+sinx))dx=int((cosx+sinx)+(cosx-sinx))/(2(cosx+sinx))dx`
`=(1)/(2)intdx+(1)/(2)int((cosx-sinx))/((cosx+sinx))dx`
`=(1)/(2)intdx+(1)/(2)int(1)/(t)dt," where"(cosx+sinx)=tand(cosx-sinx)dx=dt`
`=(1)/(2)x+(1)/(2)log|t|+C=(1)/(2)x+(1)/(2)log|{:cosx+sinx:}|+C`
(ii) `int(1)/((1+cotx))dx=int(1)/((1+(cosx)/(sinx)))dx=int(sinx)/((sinx+cosx))dx`
`=int((sinx+cosx)-(cosx-sinx))/(2(sinx+cosx))dx`
`=(1)/(2)intdx-(1)/(2)int((cosx-sinx))/((sinx+cosx))dx`
`=(1)/(2)intdx-(1)/(2)int(1)/(t)dt`,
where sin x + cos x = t and (cos x - sin x)dx=dt
`=(1)/(2)x-(1)/(2)log|t|+C=(1)/(2)x-(1)/(2)log|{:sinx+cosx:}|+C`.
(iii) `int((1-tanx)/(1+tanx))dx=int((1-(sinx)/(cosx)))/((1+(sinx)/(cosx)))dx=int((cosx-sinx))/((cosx+sinx))dx`
`=int(1)/(t)dt," where"(cosx+sinx)=t and(cosx+sinx)dx=dt`
`=log|t|+C=log|{:(cosx+sinx):}|+C`.
(iv) `int(tanx)/((secx+cosx))dx=int(sinx)/(1+cos^(2)x)dx`
`=-int(1)/((1+t^(2)))dt," where"cosx=t and sinx dx=-dt`,
`=-tan^(-1)t+C=-tan^(-1)(cosx)+C`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

int((1-tanx)/(x+logcosx))dx

Knowledge Check

  • int((1-tanx)/(1+tanx))^(2)dx=

    A
    `-(tan((pi)/(4)-x)+x)+c`
    B
    `-(tan((pi)/(4)+x)+x)+c`
    C
    `tan((pi)/(4)-x)+x+c`
    D
    `tan((pi)/(4)+x)+x+c`
  • int(dx)/((1-tanx))=?

    A
    `(1)/(2)log|sinx-cosx|+C`
    B
    `(1)/(2)x+(1)/(2)log|sinx-cosx|+C`
    C
    `(1)/(2)x-(1)/(2)log|sinx-cosx|+C`
    D
    none of these
  • int((1+tan)/(1-tanx))^(2)dx=

    A
    `(1)/(3)log[(cosx-sinx)]^(3)+c`
    B
    `tan(x-(pi)/(4))-x+c`
    C
    `tan((pi)/(4)+x)-x+c`
    D
    `sec^(2)((pi)/(4)+x)+c`
  • Similar Questions

    Explore conceptually related problems

    (i) int (1-tanx)/(1+tanx) dx (ii) int (1- cot x)/(1+ cot x) dx

    (i) int(tanx)/((sec x +tanx))dx , (ii) int(1)/((1-sinx))dx

    int(tanx)/(log(cosx))dx=

    int(1+tan^(2)x)/(1+tanx)dx=

    int(1)/(secx+tanx)dx=