Home
Class 12
MATHS
intsec^(4)xtanxdx=?...

`intsec^(4)xtanxdx=?`

Text Solution

Verified by Experts

`intsec^(4)xtanxdx=intsec^(2)*sec^(2)xtanxdx`
`=int(1+tan^(2)x)sec^(2)xtanxdx`
`=int(1+t^(2))tdt," where "tanx=t`
`=inttdt+intt^(3)dt=(t^(2))/(2)+(t^(4))/(4)+C`
`=(1)/(2)tan^(2)x+(1)/(4)tan^(4)x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsec^(5)xtanxdx=?

intsec^(7/2)xtanxdx

intsec^p xtanx dx

intsec^p xtanx dx

intsec^6x tanx dx

intsec^8x tanx dx

intsec^3xtanxdx

intsec^3xtanxdx

intsec^6xtanxdx

intsec^(4) x dx