Home
Class 12
MATHS
Evaluate : (i) intxsec^(2)xdx (ii) in...

Evaluate :
(i) `intxsec^(2)xdx` (ii) `intxsin2xdx`

Text Solution

Verified by Experts

(i) Integrating by parts, taking x as the first function, we have
`intxsec^(2)xdx=x*intsec^(2)xdx-int{(d)/(dx)(x)*intsec^(2)xdx}dx`
`=xtanx-int1*tanxdxtanx+log|cosx|+C`.
(ii) Integrating by parts, taking x as the first function, we get
`intxsin2x=x*intsin2xdx-int{(d)/(dx)(x)*intsin2xdx}dx`
`x*((-cos2x)/(2))-int1*((-cos2x)/(2))dx`
`=(-xcos2x)/(2)+(1)/(2)intcos2xdx`
`=(-xcos2x)/(2)+(1)/(2)*(sin2x)/(2)+C`
`(-xcos2x)/(2)+(1)/(4)sin2x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intxsec^(-1)xdx=

Evaluate: (i) int sin^(2)xdx (ii) int cos^(2)xdx( iii )int sin^(2)x cos^(2)xdx

Evaluate: (i) int tan^(3)x sec^(2)xdx (ii) int tan x sec^(4)xdx

Evaluate: (i) int sec^(4)2xdx (ii) int cos ec^(4)3xdx

Evaluate: (i) int tan^(n)x sec^(2)xdx (ii) int tan^(2)x sec^(4)xdx( iii) int sec^(4)xdx

Evaluate: (i) sin^(4)x cos^(3)xdx (ii) int sin^(5)xdx

Evaluate : (i) int tan^(2)x dx , (ii) intcot^(2)xdx , (iii) intsin^(2)x dx