Home
Class 12
MATHS
Evaluate : intx^(n)logxdx....

Evaluate : `intx^(n)logxdx`.

Text Solution

Verified by Experts

(i) Integrating by parts, taking x as the first function, we get
`intx^(n)logx=(logx)*intx^(n)dx-int{(d)/(dx)(logx)*intx^(n)dx}dx`
`=(logx)*(x^(n+1))/((n+1))-int(1)/(x)*(x^(n+1))/((n+1))dx`
`=(x^(n+1)logx)/((n-1))-(1)/((n+1))intx^(n)dx`
`=(x^(n+1)logx)/((n-1))-(x^(n+1))/((n+1)^(2))+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intx^(2)logxdx=

Evaluate: int(x^2+1)logxdx

Evaluate: int(1+x)logxdx

Evaluate: intx2^xdx

Evaluate : intx^(5)" dx"

Evaluate : intx log x dx

Evaluate : intx^(2)sinxdx .

Evaluate intxe^xdx

Evaluate: intx^2logxdx