Home
Class 12
MATHS
Evaluate : intx^(2)sinxdx....

Evaluate : `intx^(2)sinxdx`.

Text Solution

Verified by Experts

Integrating by parts, taking `x^(2)` as the first function, we get
`intx^(2)sinxdx=x^(2)intsinxdx-int[(d)/(dx)(x^(2))*intsinxdx]dx`
`=x^(2)(-cosx)-int2x(-cosx)dx`
`=-x^(2)cosx+2intxcosxdx`
`=-x^(2)cosx+2[x(sinx)-int{(d)/(dx)(x)*intcosxdx}dx]`
[integrating x cos x by parts]
`=-x^(2)cosx+2[xsinx-intsinxdx]`
`=-x^(2)cosx+2[xsinx+cosx]+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^(2x)sinxdx

Evaluate: inte^(-x)sinxdx

Evaluate: intx^2sin^-1xdx

Evaluate: intx^2sinx\ dx

Evaluate: intx^2sin2xdx

Evaluate : intx^(2)sin^(-1)xdx .

Evaluate : intxe^(x^2)dx .

Evaluate: intx^(2)e^(x) dx

Evaluate intcos^5(x/2)sinxdx

Evaluate: intx2^xdx