Home
Class 12
MATHS
Evaluate : int(logx)/(x^(2))dx....

Evaluate : `int(logx)/(x^(2))dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{\log x}{x^2} \, dx \), we will use the method of integration by parts. ### Step 1: Identify \( u \) and \( dv \) We choose: - \( u = \log x \) (which we will differentiate) - \( dv = \frac{1}{x^2} \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(logx)^(2)dx .

int(logx)/(x^3)dx=

Evaluate int logx dx

int(logx)/(x+1)^2dx=

Evaluate int(logx)/((1+logx)^(2))dx .

int((logx)^(2))/(x)dx.

Evaluate : (i) int(logx)/(x)dx (ii) int(sec^(2)(logx))/(x)dx (iii) (e^(tan^(-1)x))/((1+x^(2)))dx (iv) int(sinsqrt(x))/(sqrt(x))dx

int (logx)^3/(x)dx

Evaluate: int(logx)/((1+logx)^2)\ dx