Home
Class 12
MATHS
Evaluate the following integrals: inte...

Evaluate the following integrals:
`inte^(2x)sinxdx`

Text Solution

Verified by Experts

Integrating by parts, we get
`inte^(2x)sinxdx=(e^(2x)*intsinxdx)-int{(d)/(dx)(e^(2x))*intsinxdx}dx`
`=e^(2x)*cosx+2inte^(2x)cosxdx`
`=-e^(2x)cosx+2[(e^(2x)*intcosxdx)-int{(d)/(dx)(e^(2x))*intcosxdx}dx]`
[integrating `e^(2x)` cos x by parts]
`=-e^(2x)cosx+2e^(2x)sinx-4inte^(2x)sinxdx+C`.
`:.5inte^(2x)sinxdx=e^(2x)(2sinx-cosx)+C`
`or" "inte^(2x)sinxdx-(1)/(5)e^(2x)(2sinx-cosx)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: inte^(2x)sinxcosxdx

Evaluate the following integrals: inte^(-x)cosxdx

Evaluate the following integrals: inte^(x)cos2xcos4xdx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals: int(3x+4)^(2)dx

Evaluate the following integrals: inte^(x)*(x)/((1+x)^(2))dx

Evaluate the following integral: int_1^(2pi)|s in x|dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int(cos2x)/(cosx)dx

2. int e^(x)sinxdx