Home
Class 12
MATHS
Evaluate : intxtan^(-1)xdx...

Evaluate : `intxtan^(-1)xdx`

Text Solution

Verified by Experts

Integrating by parts, taking `tan^(-1)` x as the first function, we get
`intxtan^(-1)dx=(tan^(-1)x)*intxdx-int{(d)/(dx)(tan^(-1)x)*intxdx}dx`
`=(tan^(-1)x)*(x^(2))/(2)-int(1)/((1+x^(2)))*(x^(2))/(2)dx`
`=(x^(2)tan^(-1)x)/(2)-(1)/(2)int(1-(1)/(1+x^(2)))dx " "["on dividing "x^(2)" by "1+x^(2)]`
`=(x^(2)tan^(-1))/(2)-(1)/(2)intdx+(1)/(2)int(1)/((1+x^(2)))dx`
`=(x^(2)tan^(-1)x)/(2)-(x)/(2)+(1)/(2)tan^(-1)x+C`
`=(1)/(2)(1+x^(2))tan^(-1)x-(1)/(2)x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int xtan^(-1)xdx

Evaluate: int tan^(-1)xdx

Evaluate :int x sin^(-1)xdx

Evaluate: int x sin^(-1)xdx

Evaluate: int x cot^(-1)xdx

Evaluate intxtan^-1xdx

Evaluate: inttan^-1xdx

Evaluate: int x^(3)tan^(-1)xdx

Evaluate: int x^(2)tan^(-1)xdx