Home
Class 12
MATHS
Evaluate int sin(logx)dx....

Evaluate `int sin(logx)dx`.

Text Solution

Verified by Experts

Put logx=t so that `x=e^(t)and(1)/(x)=dtordx=e^(t)dt`.
`:.intsin(logx)dx=inte^(t)sintdt` . . . (i)
Now, `inte^(t)sintdt=e^(t)(-cost)-inte^(t)*(-cost)dt" [integrating by parts]"`
`=-e^(t)cost+inte^(t)costdt`
`=-e^(t)cost+{:[e^(t)sint-inte^(t)sintdt]:}` [integrating `e^(t)` cos t by parts]
`=-e^(t)cost+e^(t)sint-inte^(t)sintdt`.
`:.2inte^(t)sintdt=-e^(t)tcost+e^(t)sint`
`orinte^(t)sintdt=(1)/(2)(-e^(t)cost+e^(t)sint)+C`.
Putting this value in (i), we get
`intsin(logx)dx=inte^(t)sintdt`
`=(1)/(2)(-e^(t)cost+e^(t)sint)+C`
`=(1)/(2)[-xcos(logx)+xsin(logx)]+C`
`=-(1)/(2)xcos(logx)+(1)/(2)xsin(logx)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

.Evaluate: int sin(x)dx

int cos(logx)dx=?

Evaluate int logx dx

Evaluate : int(logx)^(2)dx .

int logx dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate: int{tan(logx)+sec^2(logx)}\ dx

Evaluate: int[tan(logx)+sec^2(logx)]dx

Evaluate : int(logx)/(x^(2))dx .