Home
Class 12
MATHS
inttan^(-1)sqrt(x) dx is equal to...

`inttan^(-1)sqrt(x) dx` is equal to

Text Solution

Verified by Experts

Put `sqrt(x)=t" so that "(1)/(2sqrt(x))dx=dtordx=2tdt`.
`:.inttan^(-1)sqrt(x)dx=2int(tan^(-1)t)dt`
`=2{:[(tan^(-1)t)*(t^(2))/(2)-int{(1)/((1+t^(2)))*(t^(2))/(2)-int}dt]:}+C`
`=t^(2)(tan^(-1)t)-int(t^(2))/((1+t^(2)))dt+C`
`=t^(2)(tan^(-1)t)-int([(1+t^(2))-1])/((1+t^(2)))dt+C`
`t^(2)(tan^(-1)t)-intdt+int(1)/((1+t^(2)))dt+C`
`=t^(2)(tan^(-1)t)-t+tan^(-1)t+C=(t^(2)+1)tan^(-1)t-t+C`
`=(x+1)tan^(-1)sqrt(x)-sqrt(x)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)sqrt(x+1)dx is equal to

What is inttan^(-1)(secx+tanx) dx equal to ?

The value of inttan^(3)2xsec2x dx is equal to:

int sqrt(e^(x)-1)dx is equal to

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

inttan(sin^(-1)x)dx=

int(a^(sqrt(x)))/(sqrt(x))dx is equal to