Home
Class 12
MATHS
int(3-5x)^(7)dx=?...

`int(3-5x)^(7)dx=?`

A

`-5(3-5x)^(6)+C`

B

`((3-5x)^(8))/(-40)+C`

C

`(-5(3-5x)^(8))/(8)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3 - 5x)^7 \, dx \), we will use the substitution method. Here are the steps: ### Step-by-Step Solution: 1. **Substitution**: Let \( t = 3 - 5x \). - Then, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -5 \implies dt = -5 \, dx \implies dx = -\frac{dt}{5} \] 2. **Rewrite the Integral**: Substitute \( t \) and \( dx \) into the integral: \[ \int (3 - 5x)^7 \, dx = \int t^7 \left(-\frac{dt}{5}\right) \] This simplifies to: \[ -\frac{1}{5} \int t^7 \, dt \] 3. **Integrate**: Now integrate \( t^7 \): \[ -\frac{1}{5} \cdot \frac{t^8}{8} + C = -\frac{1}{40} t^8 + C \] 4. **Back Substitute**: Replace \( t \) back with \( 3 - 5x \): \[ -\frac{1}{40} (3 - 5x)^8 + C \] ### Final Answer: Thus, the integral \( \int (3 - 5x)^7 \, dx \) is: \[ -\frac{1}{40} (3 - 5x)^8 + C \]

To solve the integral \( \int (3 - 5x)^7 \, dx \), we will use the substitution method. Here are the steps: ### Step-by-Step Solution: 1. **Substitution**: Let \( t = 3 - 5x \). - Then, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -5 \implies dt = -5 \, dx \implies dx = -\frac{dt}{5} ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(3x+5)^(7)dx=?

int(3x+5)^(7)dx

int(4+5x)^(3)dx

int(5x-2)^(3)dx

int(5x-2)^(3)dx

int(3 -7x)^(5) dx

int(5x-1)^7dx=?

int x(3x+7)^(5)dx

int x(3x+7)^(5)dx

int(7x-2)^(-5)dx