Home
Class 12
MATHS
int2^((3x+4))dx=?...

`int2^((3x+4))dx=?`

A

`(3)/((log2))*2^((3x+4))+C`

B

`(2^((2x+4)))/(3(log2)+C)`

C

`(2)/((log2))*2^((3x+4))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 2^{(3x+4)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 3x + 4 \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 3 \implies dx = \frac{dt}{3} \] ### Step 3: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral gives: \[ \int 2^{(3x+4)} \, dx = \int 2^t \cdot \frac{dt}{3} \] ### Step 4: Factor Out the Constant We can factor out \( \frac{1}{3} \): \[ = \frac{1}{3} \int 2^t \, dt \] ### Step 5: Integrate The integral of \( 2^t \) is: \[ \int 2^t \, dt = \frac{2^t}{\log 2} + C \] Thus, we have: \[ = \frac{1}{3} \left( \frac{2^t}{\log 2} + C \right) \] ### Step 6: Substitute Back Now substitute back \( t = 3x + 4 \): \[ = \frac{1}{3} \cdot \frac{2^{(3x + 4)}}{\log 2} + C \] ### Step 7: Final Simplification This can be simplified to: \[ = \frac{2^{(3x + 4)}}{3 \log 2} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int 2^{(3x+4)} \, dx = \frac{2^{(3x + 4)}}{3 \log 2} + C \] ---

To solve the integral \( \int 2^{(3x+4)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 3x + 4 \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int 2^(3x+4) dx

int_1^2(3x-4)dx=?

int2^(3x).3^(x)dx=

int (2^(3x) + 4) dx

int_-2^4(-3x+1)dx=?

int (3x+4)^2 dx

int(2x+3)/(3x+4)dx

int (3x^2 - 4)x dx

int(1)/((2-3x)^(4))+dx=?

int(1+2x)^3/x^4dx