Home
Class 12
MATHS
int"tan"^(2)(x)/(2)dx=?...

`int"tan"^(2)(x)/(2)dx=?`

A

`"tan"(x)/(2)-x+C`

B

`"tan"(x)/(2)+x+C`

C

`2"tan"(x)/(2)+x+C`

D

`2"tan"(x)/(2)-x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\tan^2(x)}{2} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral using the identity for \(\tan^2(x)\): \[ \tan^2(x) = \sec^2(x) - 1 \] Thus, we can express the integral as: \[ \int \frac{\tan^2(x)}{2} \, dx = \int \frac{\sec^2(x) - 1}{2} \, dx \] This can be separated into two integrals: \[ = \frac{1}{2} \int \sec^2(x) \, dx - \frac{1}{2} \int 1 \, dx \] ### Step 2: Integrate Each Part Now, we can integrate each part separately: 1. The integral of \(\sec^2(x)\) is \(\tan(x)\): \[ \int \sec^2(x) \, dx = \tan(x) \] 2. The integral of \(1\) is simply \(x\): \[ \int 1 \, dx = x \] Putting these results back into our expression, we have: \[ \frac{1}{2} \tan(x) - \frac{1}{2} x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\tan^2(x)}{2} \, dx = \frac{1}{2} \tan(x) - \frac{1}{2} x + C \]

To solve the integral \(\int \frac{\tan^2(x)}{2} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral using the identity for \(\tan^2(x)\): \[ \tan^2(x) = \sec^2(x) - 1 \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int tan((x)/(2))dx

int tan^(2)(x-3)dx

int tan^(2)(2x-3)dx

int(tan^(2)x-cot^(2)x)dx=

The value of int tan^(3)(2x)sec(2x)dx is equal to:

int(tan^(-1)x)/(x^(2))*dx

inte^(x)tan^(2)(e^(x))dx=

int tan(2x+1)dx

int tan(2x+1)dx

int(tan(2+3logx))/(x)dx=