Home
Class 12
MATHS
int(logx)/(x)dx=?...

`int(logx)/(x)dx=?`

A

`(1)/(2)(logx)^(2)+C`

B

`-(1)/(2)(logx)^(2)+C`

C

`(2)/(x^(2))+C`

D

`(-2)/(x^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\log x}{x} \, dx\), we can use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides to find \( dx \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \) (from \( t = \log x \)), we can substitute \( dx \) in terms of \( t \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Now, substituting \( t \) and \( dx \) into the integral: \[ \int \frac{\log x}{x} \, dx = \int t \cdot \frac{1}{x} \cdot dx = \int t \cdot dt \] ### Step 3: Integrate Now we can integrate \( t \): \[ \int t \, dt = \frac{t^2}{2} + C \] ### Step 4: Back Substitute Now, we substitute back \( t = \log x \): \[ \frac{t^2}{2} + C = \frac{(\log x)^2}{2} + C \] ### Final Answer Thus, the integral \(\int \frac{\log x}{x} \, dx\) is: \[ \int \frac{\log x}{x} \, dx = \frac{(\log x)^2}{2} + C \] ---

To solve the integral \(\int \frac{\log x}{x} \, dx\), we can use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides to find \( dx \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \) (from \( t = \log x \)), we can substitute \( dx \) in terms of \( t \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x^3)dx=

int(logx-1)/(x)dx

int(logx)^(2)dx=?

int (logx)^3/(x)dx

int(tan(logx))/(x)dx=?

int(logx)/(x^(2))dx=?

int((logx)^n)/(x)dx=

int(logx)/(x+1)^2dx=

Evaluate the following integrals: int(logx)/(x^(n))dx