Home
Class 12
MATHS
int(1)/(x(logx))dx=?...

`int(1)/(x(logx))dx=?`

A

`log|x|+C`

B

`(-2)/(x^(2))+C`

C

`(logx)^(2)+C`

D

`log|logx|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x \log x} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \) (from \( t = \log x \)), we can substitute \( dx \): \[ dx = e^t \, dt \] ### Step 3: Substitute in the Integral Now substitute \( t \) and \( dx \) into the integral: \[ \int \frac{1}{x \log x} \, dx = \int \frac{1}{e^t \cdot t} \cdot e^t \, dt \] This simplifies to: \[ \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \log |t| + C \] ### Step 5: Substitute Back Now substitute back \( t = \log x \): \[ \log |t| + C = \log |\log x| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{x \log x} \, dx = \log |\log x| + C \] ---

To solve the integral \( \int \frac{1}{x \log x} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Question Stimulus :- int1/(x(logx)^2)dx=?

int(dx)/(x(3+logx))=

Choose the correct answer of the given question int 1/(x(logx)^n) dx = ____+c

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int1/(x(1-logx)^(2))dx=

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int(logx)/(x^(2))dx=?

int((logx)^n)/(x)dx=

int_(1)^(2)(logx)/(x)dx