Home
Class 12
MATHS
int(sinsqrt(x))/(sqrt(x))dx=?...

`int(sinsqrt(x))/(sqrt(x))dx=?`

A

`2cossqrt(x)+C`

B

`-2cossqrt(x)+C`

C

`-(cossqrt(x))/(2)+C`

D

`(cossqrt(x))/(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx\), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we can express \( x \) in terms of \( t \): \[ x = t^2 \] Now, we differentiate both sides to find \( dx \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, we substitute \( \sqrt{x} \) and \( dx \) into the integral: \[ \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\sin(t)}{t} \cdot 2t \, dt \] This simplifies to: \[ \int 2 \sin(t) \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int 2 \sin(t) \, dt = -2 \cos(t) + C \] ### Step 4: Back Substitute Now we need to substitute back \( t = \sqrt{x} \): \[ -2 \cos(t) + C = -2 \cos(\sqrt{x}) + C \] ### Final Answer Thus, the integral is: \[ \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = -2 \cos(\sqrt{x}) + C \]

To solve the integral \(\int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx\), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we can express \( x \) in terms of \( t \): \[ x = t^2 \] Now, we differentiate both sides to find \( dx \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(cos sqrt(x))/(sqrt(x))dx

int(sqrt(x))/(sqrt(x)+2)dx

int(a^(sqrt(x)))/(sqrt(x))dx

int(k^(sqrt(x)))/(sqrt(x))dx

int(sqrt(x))/(a sqrt(x)+b)dx

int(a^(sqrt(x)))/(sqrt(x))dx

int(sqrt(x)+(1)/(sqrt(x)))dx

int(sqrt(x)+(1)/(sqrt(x)))dx

int(e^(sqrt(x)))/(sqrt(x))dx

int(sqrt(x)+1)/(x+sqrt(x))dx