Home
Class 12
MATHS
int(sqrt(sinx))cosxdx=?...

`int(sqrt(sinx))cosxdx=?`

A

`(2)/(3)(cosx)^(3/2)+C`

B

`(3)/(2)(cosx)^(3/2)+C`

C

`(2)/(3)(sinx)^(3/2)+C`

D

`(3)/(2)(sinx)^(3/2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\sin x} \cos x \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sin x \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = \cos x \, dx \] This means that \( \cos x \, dx = dt \). ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int \sqrt{\sin x} \cos x \, dx = \int \sqrt{t} \, dt \] ### Step 3: Integrate Next, we integrate \( \sqrt{t} \): \[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} + C = \frac{2}{3} t^{3/2} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \sin x \): \[ \frac{2}{3} (\sin x)^{3/2} + C \] ### Final Answer Thus, the integral \( \int \sqrt{\sin x} \cos x \, dx \) is: \[ \frac{2}{3} \sin^{3/2} x + C \] ---

To solve the integral \( \int \sqrt{\sin x} \cos x \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sin x \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = \cos x \, dx \] This means that \( \cos x \, dx = dt \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sqrt(1-sinx)cosx dx

int_(0)^(pi//2)(sqrt(sinx)cosx)^(3)dx=?

int(1)/(sinx sqrt(sinxcosx))dx=

int(1)/(sqrt(1+sinx))dx=

int(cotx)/(sqrt(sinx))dx=

int(1)/(sinx sqrt(sinx cos x))dx=

int(x.cosx)/(sqrt(x.sinx+cosx))dx=

int cosxdx

int-cosxdx

inte^sinx cosxdx