Home
Class 12
MATHS
inte^(x)cot(e^(x))dx=?...

`inte^(x)cot(e^(x))dx=?`

A

`cot(e^(x))+C`

B

`log|sine^(x)|+C`

C

`log|"cosec "e^(x)|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Put `e^(x)=t ande^(x)dx=dt`.
`:." "I=intcot"t dt"=log|sint|+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(e^x)/(a+e^(x))dx=?

int e^(x)sec e^(x)dx

int(e^(-x))/(1+e^(x))dx=

int(x cot^(2)x)dx

inte^x/(e^x+e^(-x))dx

inte^(x)(e^(x)-e^(-x))dx=

int(e^(x)dx)/(e^(x)-1)

int(e^x dx)/(1-e^(x))

int(tan x)/(cot x)dx

int(dx)/(1+cot^(2)x)