Home
Class 12
MATHS
int(e^x(1+x))/(cos^2(x e^x))\ dx= 2(log...

`int(e^x(1+x))/(cos^2(x e^x))\ dx=` `2(log)_ecos(x e^x)+C` (b) `sec(x e^x)+C` (c) `tan(x e^x)+C` (d) `tan(x+e^x)+C`

A

`tan(xe^(x))+C`

B

`cot(xe^(x))+C`

C

`ex^(x)tanx+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Put `xe^(x)=t and(xe^(x)+e^(x))dx=dt`.
`:." "I=int(1)/(cos^(2)t)dt=intsec^(2)"t dt"=tan t+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=2(log)_(e)cos(xe^(x))+C(b)sec(xe^(x))+C(c)tan(xe^(x))+C(d)tan(x+e^(x))+C

int e^(x)sec e^(x)tan e^(x)dx

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int(e^(x)(1+x))/(cos^(2)(e^(x)*x))dx equals (A)-cot(ex^(x))+C(B)tan(xe^(x))+C(C)tan(e^(x))+C(D)cot(e^(x))+C

int e^(x)(tan x-log(cos x))dx=

int x^2 . e^(x^3) dx = (a) e^(x^3) + C (b) e^(x^2) + C (c) 1/3 e^(x^3) + C (d) 1/3 e^(x^2) + C

int((4e^(x)-25)/(2e^(x)-5))dx=Ax+B(log)/(2e^(x))-(5)/(+c)

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

" c) "int e^(x)cos(e^(x))dx

int e^(x)tan(e^(x))dx