Home
Class 12
MATHS
int (dx)/(e^x + e^-x)...

`int (dx)/(e^x + e^-x)`

A

`cot^(-1)(e^(x))+C`

B

`tan^(-1)(e^(x))+C`

C

`log|e^(x)+1|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int(dx)/((e^(x)+(1)/(e^(x))))=int(e^(x))/((1+e^(2x)))dx`.
`=int(1)/((1+t^(2)))dt," where "e^(x)=t ande^(x)dx=dt`.
`=tan^(-1)(t)+C=tan^(-1)(e^(x))+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

I = int(dx)/(e^(x) + 4.e^(-x)) dx =

int(dx)/(e^(x)+e^(2x))

int(dx)/(e^(x)+4e^(-x))=

(i) int (e^x dx)/(e^x (e^x-1)) (ii) int e^x/((1+e^x)(2+e^x)) dx (iii) int e^x/((e^x-1)^2(e^x+2)) dx

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int(dx)/(e^(x)+1-2e^(-x))=

int(dx)/(e^(3x)+e^(-3x))=

Evaluate: int_0^1 (dx)/(e^x+e^(-x))