Home
Class 12
MATHS
int(sinx)/((1+sinx))dx=?...

`int(sinx)/((1+sinx))dx=?`

A

`x+tanx-secx+C`

B

`x-tanx-secx+C`

C

`x-tanx+secx+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by multiplying and dividing the integrand by \( 1 - \sin x \): \[ \int \frac{\sin x}{1 + \sin x} \, dx = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] ### Step 2: Expand the numerator Now, we can expand the numerator: \[ \sin x (1 - \sin x) = \sin x - \sin^2 x \] And the denominator simplifies to: \[ (1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x \] Thus, we can rewrite the integral as: \[ \int \frac{\sin x - \sin^2 x}{\cos^2 x} \, dx \] ### Step 3: Separate the integrals Now we can separate the integral into two parts: \[ \int \frac{\sin x}{\cos^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x} \, dx \] ### Step 4: Rewrite the integrals The first integral can be rewritten using the identity \( \frac{\sin x}{\cos^2 x} = \tan x \sec x \): \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx \] ### Step 5: Integrate the first term The integral of \( \tan x \sec x \) is: \[ \int \tan x \sec x \, dx = \sec x + C \] ### Step 6: Integrate the second term For the second integral, we can use the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \) and the integral of \( 1 \) is \( x \): \[ \int \tan^2 x \, dx = \tan x - x + C \] ### Step 7: Combine the results Now we can combine the results of our integrals: \[ \sec x - (\tan x - x) + C \] Thus, the final result is: \[ \sec x - \tan x + x + C \] ### Final Answer: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \sec x - \tan x + x + C \]

To solve the integral \( \int \frac{\sin x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by multiplying and dividing the integrand by \( 1 - \sin x \): \[ \int \frac{\sin x}{1 + \sin x} \, dx = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx))dx

int(tanx)/((1-sinx))dx

int(sinx)/(1+sin x) dx

int(sinx)/((sinx-cosx))dx=?

int(sinx)/(1-sin^(2)x)dx=

int(sinx)/(sinx-cosx)dx=

int ((1+ sinx))/((1- sinx)) dx=?

int(sinx)/(1+cos^2x)dx=

int(x+sinx)/(1-cosx)dx=