Home
Class 12
MATHS
int{(1-tan((x)/(2)))/(1+tan((x)/(2)))}dx...

`int{(1-tan((x)/(2)))/(1+tan((x)/(2)))}dx=?`

A

`2log|"sec"(x)/(2)|+C`

B

`2log|"cos"(x)/(2)|+C`

C

`2log|sec((pi)/(4)-(x)/(2))|+C`

D

`2log|cos((pi)/(4)-(x)/(2))|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the expression using the identity for tangent subtraction: \[ \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \] Thus, the integral becomes: \[ \int \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx \] ### Step 2: Substitution Let: \[ t = \frac{\pi}{4} - \frac{x}{2} \] Then, differentiating both sides gives: \[ dt = -\frac{1}{2} dx \quad \Rightarrow \quad dx = -2 dt \] ### Step 3: Substitute in the Integral Substituting \( t \) into the integral: \[ \int \tan(t) (-2 dt) = -2 \int \tan(t) \, dt \] ### Step 4: Integrate The integral of \( \tan(t) \) is: \[ \int \tan(t) \, dt = -\log|\cos(t)| + C \] Thus: \[ -2 \int \tan(t) \, dt = -2 \left(-\log|\cos(t)|\right) + C = 2 \log|\cos(t)| + C \] ### Step 5: Back Substitute Now substitute back \( t = \frac{\pi}{4} - \frac{x}{2} \): \[ 2 \log|\cos\left(\frac{\pi}{4} - \frac{x}{2}\right)| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} \, dx = 2 \log\left|\cos\left(\frac{\pi}{4} - \frac{x}{2}\right)\right| + C \]

To solve the integral \( \int \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the expression using the identity for tangent subtraction: \[ \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(1-tan^(2)x)/(1+tan^(2)x)dx

"int(1+tan x)^(2)dx

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1)/(x^(2))tan^(2)((1)/(x))dx

int(1)/(cos^(2)x(1-tan x)^(2))dx

int(((tan((1)/(x)))/(x))^(2)dx=

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

int(tan^(-1)x)/(x^(2))*dx

int(1+tan^(2)x)/(1+cot^(2)x)dx