Home
Class 12
MATHS
int(cosx)/((1+cosx))dx=?...

`int(cosx)/((1+cosx))dx=?`

A

`x+"tan"(x)/(2)+C`

B

`-x+"tan"(x)/(2)+C`

C

`x-"tan"(x)/(2)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\cos x}{1 + \cos x} \, dx \] We can manipulate the integrand by adding and subtracting 1 in the numerator: \[ \int \frac{\cos x + 1 - 1}{1 + \cos x} \, dx = \int \frac{(1 + \cos x) - 1}{1 + \cos x} \, dx \] This simplifies to: \[ \int \left( 1 - \frac{1}{1 + \cos x} \right) \, dx \] ### Step 2: Split the Integral Now we can split the integral into two separate integrals: \[ \int 1 \, dx - \int \frac{1}{1 + \cos x} \, dx \] The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 3: Simplify the Second Integral Next, we focus on the second integral: \[ \int \frac{1}{1 + \cos x} \, dx \] We can use the identity \( \cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \) to rewrite \( 1 + \cos x \): \[ 1 + \cos x = 1 + \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} = \frac{2}{1 + \tan^2(\frac{x}{2})} \] Thus, \[ \frac{1}{1 + \cos x} = \frac{1 + \tan^2(\frac{x}{2})}{2} \] Now we can rewrite the integral: \[ \int \frac{1}{1 + \cos x} \, dx = \frac{1}{2} \int (1 + \tan^2(\frac{x}{2})) \, dx \] ### Step 4: Integrate The integral of \( 1 \) is \( x \), and the integral of \( \tan^2(\frac{x}{2}) \) can be computed using the identity \( \tan^2 t = \sec^2 t - 1 \): \[ \int \tan^2(\frac{x}{2}) \, dx = \int (\sec^2(\frac{x}{2}) - 1) \, dx = 2 \tan(\frac{x}{2}) - x \] Thus, \[ \int (1 + \tan^2(\frac{x}{2})) \, dx = x + 2 \tan(\frac{x}{2}) - x = 2 \tan(\frac{x}{2}) \] So, \[ \int \frac{1}{1 + \cos x} \, dx = \frac{1}{2} (x + 2 \tan(\frac{x}{2})) = \frac{x}{2} + \tan(\frac{x}{2}) \] ### Step 5: Combine Results Now we combine the results from Step 2: \[ \int \frac{\cos x}{1 + \cos x} \, dx = x - \left( \frac{x}{2} + \tan(\frac{x}{2}) \right) \] This simplifies to: \[ \frac{x}{2} - \tan(\frac{x}{2}) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\cos x}{1 + \cos x} \, dx = \frac{x}{2} - \tan\left(\frac{x}{2}\right) + C \]

To solve the integral \( \int \frac{\cos x}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\cos x}{1 + \cos x} \, dx \] We can manipulate the integrand by adding and subtracting 1 in the numerator: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx))dx

int(cosx-1)/(cosx+1)dx=

int1/(cosx(1+cosx))dx=

int(dx)/((1-cosx))=?

int(cosx)/(sinx+cosx)dx=

Evaluate: int(1+2xsinx-cosx)/(x(1-cosx))dx

int(x+sinx)/(1-cosx)dx=

int(cosx)/(1+sin x)dx=?

int ((1+cosx)/(1-cosx)) dx

Evaluate the following integrals: (i) int((1-cosx)/(1+cosx))dx (ii) int((1+cosx)/(1-cosx))dx