Home
Class 12
MATHS
inttan^(-1)(secx+tanx)dx=?...

`inttan^(-1)(secx+tanx)dx=?`

A

`(pix)/(4)+(x^(2))/(4)+C`

B

`(pix)/(4)-(x^(2))/(4)+C`

C

`(1)/((1+x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(\sec x + \tan x) \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral We start with the expression \( \tan^{-1}(\sec x + \tan x) \). We know that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite \( \sec x + \tan x \) as: \[ \sec x + \tan x = \frac{1 + \sin x}{\cos x} \] So, we have: \[ \tan^{-1}(\sec x + \tan x) = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 2: Use a trigonometric identity We can use the identity for \( \tan^{-1} \) to simplify further. We know: \[ \tan^{-1}(a) = \tan^{-1}\left(\frac{b}{c}\right) \quad \text{where } a = \frac{b}{c} \] This gives us: \[ \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) \] This is because: \[ \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{\tan\frac{\pi}{4} + \tan\frac{x}{2}}{1 - \tan\frac{\pi}{4} \tan\frac{x}{2}} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} = \frac{1 + \sin x}{\cos x} \] ### Step 3: Rewrite the integral Now we can rewrite the integral: \[ \int \tan^{-1}(\sec x + \tan x) \, dx = \int \left(\frac{\pi}{4} + \frac{x}{2}\right) \, dx \] ### Step 4: Integrate Now we integrate: \[ \int \left(\frac{\pi}{4} + \frac{x}{2}\right) \, dx = \frac{\pi}{4} x + \frac{1}{2} \cdot \frac{x^2}{2} + C = \frac{\pi}{4} x + \frac{x^2}{4} + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \tan^{-1}(\sec x + \tan x) \, dx = \frac{\pi}{4} x + \frac{x^2}{4} + C \]

To solve the integral \( \int \tan^{-1}(\sec x + \tan x) \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral We start with the expression \( \tan^{-1}(\sec x + \tan x) \). We know that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite \( \sec x + \tan x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(-1)(secx+tanx)dx,-pi//2ltxlt pi//2

int(1)/(secx+tanx)dx=

int(1)/(a secx+b tanx)dx=

int(tanx)/(secx+tanx)dx=

Evaluate int(tanx)/(secx+tanx)dx

(d)/(dx)[tan^(-1)[(secx-tanx)]=

inte^(x)secx(1+tanx)dx=?

Find the differentiation of y=tan^(-1)(secx+tanx)

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

Evaluate: inttan^(-1)(x/a)dx .