Home
Class 12
MATHS
int(x^4)/(1+x^2)dx...

`int(x^4)/(1+x^2)dx`

A

`(x^(3))/(3)+x+tan^(-1)x+C`

B

`(-x^(3))/(3)+x-tan^(-1)x+C`

C

`(-x^(3))/(3)-x+tan^(-1)x+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

On dividing `x^(4)` by `(x^(2)+1)`, we get :
`I=int{(x^(2)-1)+(1)/(x^(2)+1)}dx=(x^(3))/(3)-x+tan^(-1)x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int( x^2+4)/(x^2+1)dx

int(x^(4))/((1+x^(2))^(2))dx

Evaluate: (i) int1/(sqrt((2-x)^2-1))\ dx (ii) int(x^4+1)/(x^2+1)\ dx

What is int(x^(4) +1)/(x^(2) + 1)dx equal to ? Where 'c' is a constant of integration

int (x^7)/(1+x^4)^2dx=

int(x^(4))/(x^(2)+1)dx is equal to

Evaluate: int(x^(4))/(x^(2)+1)dx

Evaluate: int(x^(4))/(x^(2)+1)dx

Evaluate : int(x^(4))/(x^(2)-1)dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx