Home
Class 12
MATHS
int(sin(x-alpha))/(sin(x+alpha))dx=?...

`int(sin(x-alpha))/(sin(x+alpha))dx=?`

A

`xcos2alpha-sin2alpha*log|sin(x+alpha)|+C`

B

`xcos2alpha+sin2alpha*log|sin(x+alpha)|+C`

C

`xcos2alpha+sinalpha*log|sin(x+alpha)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin(x - \alpha)}{\sin(x + \alpha)} \, dx\), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the numerator**: We can express \(\sin(x - \alpha)\) using the sine addition formula: \[ \sin(x - \alpha) = \sin(x + \alpha - 2\alpha) = \sin(x + \alpha)\cos(2\alpha) - \cos(x + \alpha)\sin(2\alpha) \] So, we rewrite the integral as: \[ \int \frac{\sin(x + \alpha)\cos(2\alpha) - \cos(x + \alpha)\sin(2\alpha)}{\sin(x + \alpha)} \, dx \] 2. **Separate the integral**: We can separate the integral into two parts: \[ \int \left( \cos(2\alpha) - \frac{\cos(x + \alpha)\sin(2\alpha)}{\sin(x + \alpha)} \right) \, dx \] This simplifies to: \[ \int \cos(2\alpha) \, dx - \int \cot(x + \alpha) \sin(2\alpha) \, dx \] 3. **Integrate the first term**: The integral of \(\cos(2\alpha)\) with respect to \(x\) is: \[ \cos(2\alpha) \cdot x \] 4. **Integrate the second term**: For the second term, we have: \[ -\sin(2\alpha) \int \cot(x + \alpha) \, dx \] The integral of \(\cot(x + \alpha)\) is: \[ \ln|\sin(x + \alpha)| \] Therefore, we have: \[ -\sin(2\alpha) \ln|\sin(x + \alpha)| \] 5. **Combine the results**: Putting it all together, we get: \[ \int \frac{\sin(x - \alpha)}{\sin(x + \alpha)} \, dx = \cos(2\alpha) \cdot x - \sin(2\alpha) \ln|\sin(x + \alpha)| + C \] where \(C\) is the constant of integration. ### Final Answer: \[ \int \frac{\sin(x - \alpha)}{\sin(x + \alpha)} \, dx = \cos(2\alpha) \cdot x - \sin(2\alpha) \ln|\sin(x + \alpha)| + C \]

To solve the integral \(\int \frac{\sin(x - \alpha)}{\sin(x + \alpha)} \, dx\), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the numerator**: We can express \(\sin(x - \alpha)\) using the sine addition formula: \[ \sin(x - \alpha) = \sin(x + \alpha - 2\alpha) = \sin(x + \alpha)\cos(2\alpha) - \cos(x + \alpha)\sin(2\alpha) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int sqrt((sin(x-alpha))/(sin(x+alpha)))dx

int sqrt((sin(x-alpha))/(sin(x+alpha)))

int(sin(x+alpha))/(sin x)dx

int(sin2x)/(sin(x-alpha)sin(x+alpha))dx

int(sec x)/(sqrt(sin(2x+alpha)+sin alpha))dx

int(cos alpha)/(sin x cos(x-alpha))dx=

int(dx)/(sin(x-alpha)sin(x-beta))

int(sinx+cosx)/(sin(x+alpha))dx=

int(sinx)/(sin(x-alpha)) dx = ?

int(sin xdx)/(sin(x-alpha))