Home
Class 12
MATHS
int"cosec"xdx=?...

`int"cosec"xdx=?`

A

`log|"cosec"x-cotx|+C`

B

`-log|"cosec"x-cotx|+C`

C

`log|"cosec "x+cotx|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \csc x \, dx\), we will use a technique that involves multiplying and dividing by a specific expression. Here’s the step-by-step solution: ### Step 1: Multiply and Divide by \(\csc x + \cot x\) We start with the integral: \[ \int \csc x \, dx \] To facilitate the integration, we multiply and divide by \(\csc x + \cot x\): \[ \int \csc x \, dx = \int \csc x \cdot \frac{\csc x + \cot x}{\csc x + \cot x} \, dx \] This gives us: \[ \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} \, dx \] ### Step 2: Let \(t = \csc x + \cot x\) Now, we will set: \[ t = \csc x + \cot x \] Next, we need to find \(dt\). The derivatives are: \[ \frac{d}{dx}(\csc x) = -\csc x \cot x \quad \text{and} \quad \frac{d}{dx}(\cot x) = -\csc^2 x \] Thus, we have: \[ dt = (-\csc x \cot x - \csc^2 x) \, dx = -(\csc x \cot x + \csc^2 x) \, dx \] This implies: \[ dx = \frac{dt}{-(\csc x \cot x + \csc^2 x)} \] ### Step 3: Substitute into the Integral Substituting \(dt\) into the integral, we get: \[ \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} \cdot \frac{dt}{-(\csc x \cot x + \csc^2 x)} \] The numerator simplifies to \(dt\): \[ = -\int \frac{dt}{t} \] ### Step 4: Integrate The integral \(-\int \frac{dt}{t}\) is: \[ -\log |t| + C \] Substituting back \(t = \csc x + \cot x\), we have: \[ -\log |\csc x + \cot x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \csc x \, dx = -\log |\csc x + \cot x| + C \]

To solve the integral \(\int \csc x \, dx\), we will use a technique that involves multiplying and dividing by a specific expression. Here’s the step-by-step solution: ### Step 1: Multiply and Divide by \(\csc x + \cot x\) We start with the integral: \[ \int \csc x \, dx \] To facilitate the integration, we multiply and divide by \(\csc x + \cot x\): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int"cosec"^(3)xdx

intx"cosec"^(2)xdx=?

int xcosec^2xdx

(i) int cosec x dx =____ (ii) int sec x dx= ____

int cosec^(4)xdx

int cosec^(2)xdx

int(1-cosx)."cosec"^(2)xdx=

int sec^(6)xdx=

int xcos xdx

int sec^(2)xdx=