Home
Class 12
MATHS
int((1+sinx))/((1+cosx))dx=?...

`int((1+sinx))/((1+cosx))dx=?`

A

`"tan"(x)/(2)+2log|"cos"(x)/(2)|+C`

B

`"-tan"(x)/(2)+2log|"cos"(x)/(2)|+C`

C

`"tan"(x)/(2)-2log|"cos"(x)/(2)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \sin x}{1 + \cos x} \, dx \), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Split the Integral We can separate the integral into two parts: \[ \int \frac{1 + \sin x}{1 + \cos x} \, dx = \int \frac{1}{1 + \cos x} \, dx + \int \frac{\sin x}{1 + \cos x} \, dx \] ### Step 2: Solve the First Integral For the first integral \( \int \frac{1}{1 + \cos x} \, dx \), we can use the identity \( 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \): \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2 \left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) \, dx \] The integral of \( \sec^2 \) is: \[ \frac{1}{2} \cdot 2 \tan \left(\frac{x}{2}\right) = \tan \left(\frac{x}{2}\right) \] ### Step 3: Solve the Second Integral Now, we tackle the second integral \( \int \frac{\sin x}{1 + \cos x} \, dx \). We can use the substitution \( u = 1 + \cos x \), which gives \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \): \[ \int \frac{\sin x}{1 + \cos x} \, dx = -\int \frac{1}{u} \, du = -\ln |u| + C = -\ln |1 + \cos x| + C \] ### Step 4: Combine the Results Now we combine the results from both integrals: \[ \int \frac{1 + \sin x}{1 + \cos x} \, dx = \tan \left(\frac{x}{2}\right) - \ln |1 + \cos x| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1 + \sin x}{1 + \cos x} \, dx = \tan \left(\frac{x}{2}\right) - \ln |1 + \cos x| + C \]

To solve the integral \( \int \frac{1 + \sin x}{1 + \cos x} \, dx \), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Split the Integral We can separate the integral into two parts: \[ \int \frac{1 + \sin x}{1 + \cos x} \, dx = \int \frac{1}{1 + \cos x} \, dx + \int \frac{\sin x}{1 + \cos x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx))dx

int(e^x(1-sinx))/(1-cosx)dx

int(sinx)/((1+cosx)^(2))dx

int(1+sinx)/(sinx(1+cosx))dx

inte^(x)(1-sinx)/(1-cosx)dx=

int((x-sinx)/(1+cosx))dx

int(sinx)/((sinx-cosx))dx=?

inte^(x)((1+sinx)/(1+cosx))dx=?

inte^(x)((1+sinx)/(1+cosx))dx=

Evaluate int(e^x(1+sinx))/(1+cosx)dx