Home
Class 12
MATHS
int 1/x^2 e^(-1/x) dx=...

`int 1/x^2 e^(-1/x) dx=`

A

`e^(-1//x)+C`

B

`-e^(-1//x)+C`

C

`(e^(-1//x))/(x)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Put `-(1)/(x)=t and(1)/(x^(2))dx=dt`.
`:." "I=inte^(t)dt=e^(t)+C=e^(-1//x)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1-1/x^2)e^(x+1/x)dx

Evaluate: int(1+x^2)/x^2e^(x-1/x)dx

int(1+x^2)/x^2e^(x-1/x)dx

Find the Definite Integrals : int_1^2 e^x((x-1)/x^2) dx

Evaluate the following integral: int_(1)^(2)(1)/(x^(2))e^(-1/x)dx

int(1)/(x^(2)e^(a//x))dx=

int x e^(1+x^2)dx

Evaluate : int_(1)^(2)(1)/(x^(2))e^(1/x)dx

Find the value of int_(1/2)^(2)e^(|x-1/x|)dx .