Home
Class 12
MATHS
int((x+1)(x+logx)^(2))/(x)dx=?...

`int((x+1)(x+logx)^(2))/(x)dx=?`

A

`(1)/(3)(x+logx)^(3)+C`

B

`(x^(2))/(2)+x+C`

C

`(x^(3))/(3)+(x^(2))/(2)+x+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(x+1)(x+\log x)^{2}}{x} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand First, we can rewrite the integrand by dividing \(x + 1\) by \(x\): \[ \frac{(x+1)(x+\log x)^{2}}{x} = \left(1 + \frac{1}{x}\right)(x+\log x)^{2}. \] Now, we can express the integral as: \[ \int \left(1 + \frac{1}{x}\right)(x+\log x)^{2} \, dx. \] ### Step 2: Distribute the terms Next, we can distribute the terms inside the integral: \[ \int (x+\log x)^{2} \, dx + \int \frac{(x+\log x)^{2}}{x} \, dx. \] ### Step 3: Substitution Now, we will use the substitution \(t = x + \log x\). To differentiate this, we find: \[ dt = \left(1 + \frac{1}{x}\right) dx. \] This means that: \[ dx = \frac{dt}{1 + \frac{1}{x}} = (1 + \frac{1}{x})^{-1} dt. \] ### Step 4: Rewrite the integral Now we can rewrite the integral in terms of \(t\): \[ \int (x+\log x)^{2} \, dx = \int t^{2} \, dt. \] ### Step 5: Integrate Now we can integrate \(t^{2}\): \[ \int t^{2} \, dt = \frac{t^{3}}{3} + C. \] ### Step 6: Substitute back Now we substitute back \(t = x + \log x\): \[ \frac{(x + \log x)^{3}}{3} + C. \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{(x+1)(x+\log x)^{2}}{x} \, dx = \frac{(x + \log x)^{3}}{3} + C. \]

To solve the integral \[ \int \frac{(x+1)(x+\log x)^{2}}{x} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int((x+1)(x+logx)^2)/(2x)dx

int((x+1)(x+logx)^4)/(3x)dx=

int_(1)^(e)((logx)^(2))/(x)dx=?

int((x+1)(x+logx)^2)/xdx=

int(sqrt(1+(logx)^2))/(x)dx=

int(sqrt(16+(logx)^(2)))/(x)dx=?

int((logx)^(2))/(x)dx.

int((logx)^n)/(x)dx=

int (logx)^3/(x)dx

int(logx)/(x^(2))dx=?