Home
Class 12
MATHS
inte^(tanx)sec^(2)xdx=?...

`inte^(tanx)sec^(2)xdx=?`

A

`e^(tanx)+tanx+C`

B

`e^(tanx)*tanx+C`

C

`e^(tanx)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Put `tanx=t andsec^(2)xdx=dt`.
`:." "I=inte^(t)dt=e^(t)+C=e^(tanx)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int sec^(2)xdx=

int sec(tan x)*sec^(2)xdx

int tan x sec^(2)xdx

int tanx sec^(2)x*dx

int e^tanx sec^2x dx

int x tan x sec^(2)xdx=

inte^(tanx)(sec^(2)x+sec^(3)xsinx)dx is equal to

int x sec^(2)xdx

int tan x sec^(6)xdx

int tan^(4)x sec^(2)xdx