Home
Class 12
MATHS
intx^(2)sinx^(3)dx=?...

`intx^(2)sinx^(3)dx=?`

A

`cosx^(3)+C`

B

`-cosx^(3)+C`

C

`-(1)/(3)cosx^(3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sin(x^3) \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Identify the substitution Let \( t = x^3 \). Then, we need to find \( dx \) in terms of \( dt \). ### Step 2: Differentiate the substitution Differentiating both sides with respect to \( x \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] ### Step 3: Substitute in the integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int x^2 \sin(x^3) \, dx = \int x^2 \sin(t) \cdot \frac{dt}{3x^2} \] ### Step 4: Simplify the integral Notice that \( x^2 \) in the numerator and denominator cancels out: \[ = \int \sin(t) \cdot \frac{dt}{3} = \frac{1}{3} \int \sin(t) \, dt \] ### Step 5: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] Thus, \[ \frac{1}{3} \int \sin(t) \, dt = \frac{1}{3} (-\cos(t)) = -\frac{1}{3} \cos(t) \] ### Step 6: Substitute back for \( t \) Now, substitute back \( t = x^3 \): \[ -\frac{1}{3} \cos(t) = -\frac{1}{3} \cos(x^3) \] ### Step 7: Add the constant of integration Finally, we add the constant of integration \( C \): \[ \int x^2 \sin(x^3) \, dx = -\frac{1}{3} \cos(x^3) + C \] ### Final Answer Thus, the final result is: \[ \int x^2 \sin(x^3) \, dx = -\frac{1}{3} \cos(x^3) + C \] ---

To solve the integral \( \int x^2 \sin(x^3) \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Identify the substitution Let \( t = x^3 \). Then, we need to find \( dx \) in terms of \( dt \). ### Step 2: Differentiate the substitution Differentiating both sides with respect to \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intx^(2)*sin x^(3)dx

intx^(2)secx^(3)dx=

intx^(3)cosx^(2)dx=?

intx^(3)sin(x^(4))dx

intx^(2) . sin x^(3) dx

Evalutate intx^(3)sinx^(4)dx.

intx.sinx.sec^(3)xdx=

intx^(5/3)dx = ?

intxe^(2x)dx=?

If intx^(2)sinx dx=(2-x^(2))u+2vx+c , then