Home
Class 12
MATHS
int((x+1)e^(x))/(cos^(2)(xe^(x)))dx=?...

`int((x+1)e^(x))/(cos^(2)(xe^(x)))dx=?`

A

`tan(xe^(x))+C`

B

`-tan(xe^(x))+C`

C

`cot(xe^(x))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(x+1)e^x}{\cos^2(x e^x)} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = x e^x \). We need to differentiate \( t \) with respect to \( x \): \[ dt = (e^x + x e^x) \, dx = e^x(1 + x) \, dx \] From this, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{e^x(1 + x)} \] ### Step 2: Substitute in the Integral Now, we substitute \( t \) and \( dx \) into the integral: \[ \int \frac{(x+1)e^x}{\cos^2(x e^x)} \, dx = \int \frac{(x+1)e^x}{\cos^2(t)} \cdot \frac{dt}{e^x(1+x)} \] Notice that the \( e^x \) and \( (x+1) \) terms cancel out: \[ = \int \frac{dt}{\cos^2(t)} \] ### Step 3: Simplify the Integral The integral \(\int \frac{dt}{\cos^2(t)}\) can be rewritten using the identity \(\frac{1}{\cos^2(t)} = \sec^2(t)\): \[ = \int \sec^2(t) \, dt \] ### Step 4: Integrate The integral of \(\sec^2(t)\) is: \[ = \tan(t) + C \] ### Step 5: Substitute Back Now, we substitute back \( t = x e^x \): \[ = \tan(x e^x) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{(x+1)e^x}{\cos^2(x e^x)} \, dx = \tan(x e^x) + C \] ---

To solve the integral \(\int \frac{(x+1)e^x}{\cos^2(x e^x)} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = x e^x \). We need to differentiate \( t \) with respect to \( x \): \[ dt = (e^x + x e^x) \, dx = e^x(1 + x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=

Evaluate: (i) int(sin sqrt(x))/(sqrt(x))dx( ii) int((x+1)e^(x))/(sin^(2)(xe^(x)))dx

int((2x+1)e^(2x))/(sin^(2)(xe^(2x)))dx

What is the value of int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx ?

int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=2(log)_(e)cos(xe^(x))+C(b)sec(xe^(x))+C(c)tan(xe^(x))+C(d)tan(x+e^(x))+C

Find int(e^(x)(1+x))/(cos^(2)(xe^(2)))dx

What is the value of int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx ?

What is int (e^(x) (1 + x))/(cos^(2) (xe^(x))) dx equal to ? where c is a constant of integration