Home
Class 12
MATHS
int(dx)/((1+sqrt(x)))=?...

`int(dx)/((1+sqrt(x)))=?`

A

`sqrt(x)-log|1+sqrt(x)|+C`

B

`sqrt(x)+log|1+sqrt(x)|+C`

C

`2sqrt(x)-2log|1+sqrt(x)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{1 + \sqrt{x}} \), we can follow these steps: ### Step 1: Substitution Let \( x = t^2 \). Then, we differentiate to find \( dx \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( x = t^2 \) into the integral gives: \[ \int \frac{dx}{1 + \sqrt{x}} = \int \frac{2t \, dt}{1 + t} \] ### Step 3: Simplify the Integral Now, we can simplify the integral: \[ \int \frac{2t \, dt}{1 + t} = 2 \int \frac{t}{1 + t} \, dt \] ### Step 4: Separate the Integral We can separate the fraction: \[ \frac{t}{1 + t} = 1 - \frac{1}{1 + t} \] Thus, we rewrite the integral: \[ 2 \int \left(1 - \frac{1}{1 + t}\right) dt = 2 \left( \int dt - \int \frac{1}{1 + t} \, dt \right) \] ### Step 5: Integrate Now we can integrate each term: \[ 2 \left( t - \ln |1 + t| \right) + C \] ### Step 6: Substitute Back Recall that we made the substitution \( t = \sqrt{x} \). Thus, substituting back gives: \[ 2 \left( \sqrt{x} - \ln |1 + \sqrt{x}| \right) + C \] ### Final Answer The final result of the integral is: \[ \int \frac{dx}{1 + \sqrt{x}} = 2\sqrt{x} - 2\ln |1 + \sqrt{x}| + C \] ---

To solve the integral \( \int \frac{dx}{1 + \sqrt{x}} \), we can follow these steps: ### Step 1: Substitution Let \( x = t^2 \). Then, we differentiate to find \( dx \): \[ dx = 2t \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x sqrt(x+1))

int(dx)/(sqrt(1-x))=

int(dx)/(sqrt(x)-1)

int(-dx)/(sqrt(1-x))=?

int(dx)/(sqrt(x)(1+x))

5. int(dx)/(sqrt(1+sqrt(x)))

int(dx)/((x-1)sqrt(x+1))=

int(dx)/((x+1)sqrt(x-1))=

int (dx)/((x+1)sqrt(x))=.....

int(dx)/((x+1)sqrt(x+2))