Home
Class 12
MATHS
int(sinx)/((sinx-cosx))dx=?...

`int(sinx)/((sinx-cosx))dx=?`

A

`(1)/(2)x-(1)/(2)log|sinx-cosx|+C`

B

`(1)/(2)x+(1)/(2)log|sinx-cosx|+C`

C

`log|sinx-cosx|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sin x - \cos x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 2: Multiply and Divide by 2 To simplify the integral, we can multiply the numerator and denominator by 2: \[ I = \frac{1}{2} \int \frac{2\sin x}{\sin x - \cos x} \, dx \] ### Step 3: Split the Numerator Next, we can express \( 2\sin x \) as \( (\sin x - \cos x) + (\sin x + \cos x) \): \[ I = \frac{1}{2} \int \left( \frac{\sin x - \cos x}{\sin x - \cos x} + \frac{\sin x + \cos x}{\sin x - \cos x} \right) \, dx \] This simplifies to: \[ I = \frac{1}{2} \int \left( 1 + \frac{\sin x + \cos x}{\sin x - \cos x} \right) \, dx \] ### Step 4: Separate the Integral Now we can separate the integral: \[ I = \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \frac{\sin x + \cos x}{\sin x - \cos x} \, dx \] ### Step 5: Solve the First Integral The first integral is straightforward: \[ \frac{1}{2} \int 1 \, dx = \frac{x}{2} \] ### Step 6: Substitute for the Second Integral For the second integral, we can use the substitution \( t = \sin x - \cos x \). Then, we find \( dt = (\cos x + \sin x) \, dx \) or \( dx = \frac{dt}{\sin x + \cos x} \). ### Step 7: Rewrite the Second Integral Substituting into the integral gives: \[ \frac{1}{2} \int \frac{1}{t} \, dt \] ### Step 8: Solve the Second Integral The integral of \( \frac{1}{t} \) is: \[ \frac{1}{2} \ln |t| + C \] Substituting back \( t = \sin x - \cos x \): \[ \frac{1}{2} \ln |\sin x - \cos x| + C \] ### Step 9: Combine Results Combining both parts, we have: \[ I = \frac{x}{2} + \frac{1}{2} \ln |\sin x - \cos x| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\sin x}{\sin x - \cos x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |\sin x - \cos x| + C \]

To solve the integral \( \int \frac{\sin x}{\sin x - \cos x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin x - \cos x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sinx-cosx)dx=

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int(1+sinx)/(sinx(1+cosx))dx

int(sinx-cosx)^(2)dx=

int(dx)/(sinx-cosx)=

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

int(cosx)/(sinx+cosx)dx=

int(secx)/(sinx+cosx)dx=

int(1+sinx)/((x-cosx)^(3))dx=

inte^(x)(sinx+cosx)dx=?