Home
Class 12
MATHS
int(dx)/((1-tanx))=?...

`int(dx)/((1-tanx))=?`

A

`(1)/(2)log|sinx-cosx|+C`

B

`(1)/(2)x+(1)/(2)log|sinx-cosx|+C`

C

`(1)/(2)x-(1)/(2)log|sinx-cosx|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(cosx)/((cosx-sinx))dx=int(-cosx)/((sinx-cosx))dx`.
`=((sinx-cosx)-(sinx+cosx))/(2(sinx-cosx))dx=int{(1)/(2)-(1)/(2)*((sinx+cosx))/((sinx-cosx))}dx`
`=(1)/(2)x-(1)/(2)log|sinx-cosx|+C`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int((1+tanx)/(1-tanx))dx

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

Knowledge Check

  • int((1-tanx)/(1+tanx))^(2)dx=

    A
    `-(tan((pi)/(4)-x)+x)+c`
    B
    `-(tan((pi)/(4)+x)+x)+c`
    C
    `tan((pi)/(4)-x)+x+c`
    D
    `tan((pi)/(4)+x)+x+c`
  • int((1+tan)/(1-tanx))^(2)dx=

    A
    `(1)/(3)log[(cosx-sinx)]^(3)+c`
    B
    `tan(x-(pi)/(4))-x+c`
    C
    `tan((pi)/(4)+x)-x+c`
    D
    `sec^(2)((pi)/(4)+x)+c`
  • Similar Questions

    Explore conceptually related problems

    int 1/(1- tanx) dx=

    Evaluate : (i) int(1)/((1+tanx))dx (ii) int(1)/((1+cotx))dx (iii) int((1-tanx)/(1+tanx))dx (iv) int(tanx)/((secx+cosx))dx

    int ((1+tanx)/(1-tanx))dx

    int(tanx)/((1-sinx))dx

    int 1/(1+tanx) dx

    int 1/(1+tanx) dx