Home
Class 12
MATHS
int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?...

`int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?`

A

`sin^(-1)(tanx)+C`

B

`cos^(-1)(sinx)+C`

C

`tan^(-1)(cosx)+C`

D

`tan^(-1)(sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx \] ### Step 2: Use substitution Let \( u = \tan x \). Then, the derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = \sec^2 x \quad \Rightarrow \quad du = \sec^2 x \, dx \] This implies that \( dx = \frac{du}{\sec^2 x} \). ### Step 3: Substitute in the integral Now, substituting \( u \) into the integral, we get: \[ I = \int \frac{\sec^2 x}{\sqrt{1 - u^2}} \cdot \frac{du}{\sec^2 x} \] The \( \sec^2 x \) terms cancel out: \[ I = \int \frac{1}{\sqrt{1 - u^2}} \, du \] ### Step 4: Recognize the integral The integral \( \int \frac{1}{\sqrt{1 - u^2}} \, du \) is a standard integral, which evaluates to: \[ I = \arcsin(u) + C \] ### Step 5: Substitute back for \( u \) Recalling that \( u = \tan x \), we substitute back: \[ I = \arcsin(\tan x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx = \arcsin(\tan x) + C \]

To solve the integral \( \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Examples: int(sec^(2)x)/(sqrt(16+tan^(2)x))dx

Evaluate : (i) int(sinx)/(sqrt(4cos^(2)x-1))dx (ii) int(sec^(2)x)/(sqrt(tan^(2)x-4))dx

Integrate : int(sec^(2)x)/(sqrt(tan^(2)x+4))dx

Evaluate: int(sec^(2)x)/(sqrt(4+tan^(2)x))dx

Evaluate: int(sec^(2)x)/(sqrt(tan^(2)x+4))dx

Evaluate: (i) int(sec^(2)x)/(sqrt(16+tan^(2)x))dx (ii) int(1)/(x sqrt((log x)^(2)-5))dx

int(sec^(2)x)/(sqrt(1+tan x))dx

Evaluate: int(sec^(2)x)/(1-tan^(2)x)dx

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

int(sec^(2)x)/(1-tan^(2)x)dx