Home
Class 12
MATHS
int((x^(2)+1))/((x^(4)+1))dx=?...

`int((x^(2)+1))/((x^(4)+1))dx=?`

A

`(1)/(sqrt(2))tan^(-1)(x-(1)/(x))+C`

B

`(1)/(sqrt(2))cot^(-1){(x-(1)/(x))}+C`

C

`(1)/(sqrt(2))tan^(-1){(1)/(sqrt(2))(x-(1)/(x))}+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

On dividing the numerator and denominator by `x^(2)`, we get
`I=int((1+(1)/(x^(2))))/((x^(2)+(1)/(x^(2))))dx=int((1+(1)/(x^(2))))/({(x-(1)/(x))^(2)+2})dx`
`=int(dt)/((t^(2)+2))," where "(x-(1)/(x))=t and(1+(1)/(x^(2)))dx=dt`
`int(dt)/([t^(2)+(sqrt(2))^(2)])=(1)/(sqrt(2))+C=(1)/(sqrt(2))tan^(-1){(1)/(sqrt(2))(x-(1)/(x))}+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int((1-x^(2)))/((1+x^(4)))dx

(i) int((x^(2) - 1)/(x^(2) + 1))dx , (ii) int ((x^(6)- 1)/(x^(2) + 1))dx (iii) int ((x^(4))/(1+x^(2)))dx , (iv) int((x^(2))/(1+x^(2)))dx

int(x^(2))/(x^(4)-1)dx

int(x^(2))/(1-x^(4))dx

Evaluate int(x(1+x^(2)))/(1+x^(4))dx

Evaluate : int(x(1+x^(2)))/(1+x^(4))dx

" Evaluate: "int(x(1+x^(2)))/(1+x^(4))dx

int(x^(2)+1)/(x^(4)-x^(2)+1)dx=

int(x^(2)-1)/(x^(4)+x^(2)+1)dx=