Home
Class 12
MATHS
inttan^5xdx...

`inttan^5xdx`

A

`(1)/(6)tan^(6)x+C`

B

`(1)/(4)tan^(4)x+(1)/(2)tan^(2)x+log|secx|+C`

C

`(1)/(4)tan^(4)x-(1)/(2)x+log|secx|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=inttan^(3)xtan^(2)xdx=inttan^(3)x(sec^(2)x-1)dx`.
`=inttan^(3)xsec^(2)xdx-inttan^(3)xdx=intt^(3)dt-inttanx(sec^(2)x-1)dx`, where tan x=t
`=(t^(4))/(4)-inttanxsec^(2)xdx+inttanxdx`
`=(1)/(4)tan^(4)x-intudu+log|secx|+C`, where tan x=u
`=(1)/(4)tan^(4)x-(1)/(2)u^(2)+log|secx|+C=(1)/(4)tan^(4)x-(1)/(2)tan^(2)x+log|secx|+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

inttan^2xdx

inttan^3xdx

inttan^7xdx

Evaluate: inttan^-1xdx

Evaluate inttan^4xdx

inttan^5xsecxdx=?

Evaluate: int tan^(5)xdx

intcos^5xdx

Evaluate intcot^5xdx

inttan^(-1)xdx=….+C