Home
Class 12
MATHS
intsin^(3)xcos^(3)xdx=?...

`intsin^(3)xcos^(3)xdx=?`

A

`-(1)/(4)cos^(4)x+(1)/(6)cos^(6)x+C`

B

`(1)/(4)sin^(4)x-(1)/(6)sin^(6)x+C`

C

`(1)/(4)sin^(4)x+(1)/(6)cos^(6)x+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=intsin^(3)cos^(2)xcosxdx=intsin^(3)x(1-sin^(2)x)cosxdx`.
`=intt^(3)(1-t^(2))dt`, where sin x=t
`=int(t^(3)-t^(5))dt=(t^(4))/(4)-(t^(6))/(6)+C=(1)/(4)sin^(4)x-(1)/(6)sin^(6)x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsin^(4)x cos^(3)xdx=

intsin^(2)x.cos^(2)xdx=

int sin^(5)xcos^(5)xdx=

Evaluate the following integrals: intsin^(2//3)xcos^(3)xdx

If intsin^(4)x cos^(3)xdx=(1)/(m)sin^(m)x-(1)/(n)sin^(n)x+c then (m,n)-=

intsin^3xcos^3xdx

intsin^3xdx

intsin^(3)xcosxdx

Evaluate: intsin^(4)xcos^(2)xdx

1 intcos^(3)4xdx 2. intsin^(5)xcos^(4)xdx