Home
Class 12
MATHS
intsec^(4)xtanxdx=?...

`intsec^(4)xtanxdx=?`

A

`(1)/(2)sec^(2)x+(1)/(4)sec^(4)x+C`

B

`(1)/(2)tan^(2)x+(1)/(4)tan^(4)x+C`

C

`(1)/(2)secx+log|secx+tanx|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=intsec^(2)x*sec^(2)x*tanxdx`.
`=intsec^(2)x(1+tan^(2)x)tanxdx=int(1+t^(2))tdt`, where tan x=t
`int(t+t^(3))dt=(t^(2))/(2)+(t^(4))/(4)+C=(1)/(2)tan^(2)x+(1)/(4)tan^(4)x+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsec^(5)xtanxdx=?

intsec^(7/2)xtanxdx

intsec^p xtanx dx

intsec^p xtanx dx

intsec^6x tanx dx

intsec^8x tanx dx

intsec^3xtanxdx

intsec^3xtanxdx

intsec^6xtanxdx

intsec^(4) x dx