Home
Class 12
MATHS
int(sqrt(tanx))/(sinxcosx)dx is equal to...

`int(sqrt(tanx))/(sinxcosx)dx` is equal to.

A

`2sqrt(tanx)+C`

B

`2sqrt(cotx)+C`

C

`2sqrt(secx)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Dividing Nr and Dr by `cos^(2)x` we get
`I=int(sqrt(tanx))/(tanx)*sec^(2)xdx=int(sec^(2)x)/(sqrt(tanx))dx`
`=int(dt)/(sqrt(t))`, where tan x=t
`=2sqrt(t)+C=2sqrt(tanx)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

The value of int(sqrt(tanx)/(sinx cosx)) dx is equal to

int ((sqrt(tanx))/(sinx cosx))dx

The value of int("ln(tanx))/(sinxcosx) dx is equal to

int(sqrt(tanx))/(sin2x)dx=

int(sqrt(tanx))/(sin2x)dx=

int(In(tanx))/(sinx cosx)dx " is equal to "

inte^(tanx)(sinx-secx)dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

int(logtanx)/(sinxcosx)dx=?