Home
Class 12
MATHS
Evaluate the following integrals: ints...

Evaluate the following integrals:
`intsin^(7)(3-2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin^7(3 - 2x) \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( u = 3 - 2x \). Then, we differentiate to find \( du \): \[ du = -2 \, dx \quad \Rightarrow \quad dx = -\frac{1}{2} du \] ### Step 2: Rewrite the Integral Substituting \( u \) and \( dx \) into the integral gives: \[ \int \sin^7(3 - 2x) \, dx = \int \sin^7(u) \left(-\frac{1}{2}\right) du = -\frac{1}{2} \int \sin^7(u) \, du \] ### Step 3: Break Down \( \sin^7(u) \) We can express \( \sin^7(u) \) as: \[ \sin^7(u) = \sin^6(u) \sin(u) = \sin^6(u)(1 - \cos^2(u)) \] This can be expanded as: \[ \sin^7(u) = \sin^6(u) - \sin^6(u) \cos^2(u) \] ### Step 4: Substitute and Split the Integral Now, we can rewrite the integral: \[ -\frac{1}{2} \int \sin^7(u) \, du = -\frac{1}{2} \left( \int \sin^6(u) \, du - \int \sin^6(u) \cos^2(u) \, du \right) \] ### Step 5: Use the Identity for \( \sin^6(u) \) Using the identity \( \sin^2(u) = 1 - \cos^2(u) \): \[ \sin^6(u) = (1 - \cos^2(u))^3 \] Now we can expand this: \[ \sin^6(u) = 1 - 3\cos^2(u) + 3\cos^4(u) - \cos^6(u) \] ### Step 6: Integrate Each Term Now we need to integrate each term separately: \[ \int (1 - 3\cos^2(u) + 3\cos^4(u) - \cos^6(u)) \, du \] This requires using the substitution \( t = \cos(u) \) and \( dt = -\sin(u) \, du \). ### Step 7: Final Integration After integrating each term and substituting back for \( u \): \[ \int \sin^7(u) \, du = \text{(integrated terms)} + C \] Substituting back \( u = 3 - 2x \) will give us the final answer. ### Final Answer The final expression will be: \[ -\frac{1}{2} \left( \text{integrated terms in terms of } u \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: intsin^(-1)sqrt(x)dx

Evaluate the following integrals: intxe^(2x)dx

Evaluate the following integrals: intcos^(3)(3x+5)dx

Evaluate the following integrals: intsin^(3)xcosxdx

Evaluate the following integrals: intsin6xcosdx

Evaluate the following integrals: (i) intsin^(2)nxdx (ii) intsin^(5)xdx

Evaluate the following integrals: intsin^(2//3)xcos^(3)xdx

Evaluate the following integrals: intsin3xcos4xdx

Evaluate the following integrals: intx^(2)e^(3x)dx

Evaluate the following integrals: inttan^(-1)((3x-x^(3))/(1-3x^(2)))dx