Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(dx)/((cosx-sinx))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{dx}{\cos x - \sin x} \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\cos x - \sin x} \] ### Step 2: Factor out \( \frac{1}{\sqrt{2}} \) We can multiply and divide the denominator by \( \sqrt{2} \): \[ I = \int \frac{1}{\sqrt{2}} \cdot \frac{dx}{\frac{\cos x}{\sqrt{2}} - \frac{\sin x}{\sqrt{2}}} \] ### Step 3: Recognize trigonometric identities Notice that \( \frac{\cos x}{\sqrt{2}} \) and \( \frac{\sin x}{\sqrt{2}} \) can be expressed in terms of sine and cosine of \( 45^\circ \) (or \( \frac{\pi}{4} \)): \[ \frac{\cos x}{\sqrt{2}} = \cos\left(x + \frac{\pi}{4}\right) \quad \text{and} \quad \frac{\sin x}{\sqrt{2}} = \sin\left(x + \frac{\pi}{4}\right) \] Thus, we can rewrite the integral as: \[ I = \frac{1}{\sqrt{2}} \int \frac{dx}{\cos\left(x + \frac{\pi}{4}\right) - \sin\left(x + \frac{\pi}{4}\right)} \] ### Step 4: Use a substitution Let \( u = x + \frac{\pi}{4} \), then \( du = dx \). The integral becomes: \[ I = \frac{1}{\sqrt{2}} \int \frac{du}{\cos u - \sin u} \] ### Step 5: Simplify the denominator We can rewrite \( \cos u - \sin u \) using the identity: \[ \cos u - \sin u = \sqrt{2} \left( \cos u \cos \frac{\pi}{4} - \sin u \sin \frac{\pi}{4} \right) = \sqrt{2} \cos\left(u + \frac{\pi}{4}\right) \] Thus, we have: \[ I = \frac{1}{\sqrt{2}} \int \frac{du}{\sqrt{2} \cos\left(u + \frac{\pi}{4}\right)} = \frac{1}{2} \int \sec\left(u + \frac{\pi}{4}\right) du \] ### Step 6: Integrate The integral of \( \sec \) is: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] Applying this to our integral: \[ I = \frac{1}{2} \ln \left| \sec\left(u + \frac{\pi}{4}\right) + \tan\left(u + \frac{\pi}{4}\right) \right| + C \] ### Step 7: Substitute back for \( u \) Substituting \( u = x + \frac{\pi}{4} \): \[ I = \frac{1}{2} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{dx}{\cos x - \sin x} = \frac{1}{2} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \]

To evaluate the integral \( \int \frac{dx}{\cos x - \sin x} \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\cos x - \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(dx)/((3cosx+4sinx))

Evaluate the following integrals: inte^(x)((cosx+sinx)/(cos^(2)x))dx

Evaluate the following integrals: int(cos2x)/(cosx)dx

Evaluate the following integrals: int(dx)/((2sinx+cosx+3))

Evaluate the following integrals. int (1)/(1-cosx)dx

Evaluate the following integral: int_0^pi(dx)/(6-cosx)

Evaluate the following integrals: int(x)/((1+sinx))dx

Evaluate the following integrals: inte^(x)(sinx+cosx)dx

Evaluate the following integrals: int(cos^(9)x)/(sinx)dx

RS AGGARWAL-METHODS OF INTEGRATION -Exercise 13B
  1. Evaluate the following integrals: intsin^(3)xcosxdx

    Text Solution

    |

  2. Evaluate the following integrals: intsec^(4)dx

    Text Solution

    |

  3. Evaluate the following integrals: intcos^3xsin^(4)dx

    Text Solution

    |

  4. Evaluate the following integrals: intcos^(4)xsin^(3)xdx

    Text Solution

    |

  5. Evaluate the following integrals: intsin^(2//3)xcos^(3)xdx

    Text Solution

    |

  6. Evaluate the following integrals: intcos^(3//5)xsin^(3)xdx

    Text Solution

    |

  7. Evaluate: intcos e c^4\ 2x\ dx

    Text Solution

    |

  8. Evaluate the following integrals: int(cos2x)/(cosx)dx

    Text Solution

    |

  9. Evaluate the following integrals: int(cosx)/(cos(x+alpha))dx

    Text Solution

    |

  10. Evaluate the following integrals: intcos^(3)xsin2xdx

    Text Solution

    |

  11. Evaluate the following integrals: int(cos^(9)x)/(sinx)dx

    Text Solution

    |

  12. Evaluate the following integrals: intcos^(4)2xdx

    Text Solution

    |

  13. Evaluate the following integrals: int(sin^(2)x)/((1+cosx)^(2))dx

    Text Solution

    |

  14. Evaluate the following integrals: int(dx)/((3cosx+4sinx))

    Text Solution

    |

  15. Evaluate the following integrals: int(dx)/((acosx+bsinx)^(2)),agt0an...

    Text Solution

    |

  16. Evaluate the following integrals: int(dx)/((cosx-sinx))

    Text Solution

    |

  17. Evaluate the following integrals: int(2tanx-3cotx)^(2)dx

    Text Solution

    |

  18. Evaluate the following integrals: intsinxsin2xsin3x

    Text Solution

    |

  19. Evaluate the following integrals: int((1-cotx)/(1+cotx))dx

    Text Solution

    |

  20. Evaluate the following integrals: int(dx)/((2sinx+cosx+3))

    Text Solution

    |