Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(dx)/((2sinx+cosx+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{2 \sin x + \cos x + 3}, \] we will use the substitution \( t = \tan\left(\frac{x}{2}\right) \). This substitution will help us express \( \sin x \) and \( \cos x \) in terms of \( t \). ### Step 1: Use the Half-Angle Formulas Using the half-angle formulas, we have: \[ \sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}. \] ### Step 2: Substitute \( \sin x \) and \( \cos x \) into the Integral Substituting these into the integral gives: \[ I = \int \frac{dx}{2\left(\frac{2t}{1+t^2}\right) + \left(\frac{1-t^2}{1+t^2}\right) + 3}. \] ### Step 3: Simplify the Denominator The denominator simplifies as follows: \[ 2\left(\frac{2t}{1+t^2}\right) + \left(\frac{1-t^2}{1+t^2}\right) + 3 = \frac{4t + 1 - t^2 + 3(1+t^2)}{1+t^2} = \frac{4t + 1 - t^2 + 3 + 3t^2}{1+t^2} = \frac{4t + 4 + 2t^2}{1+t^2}. \] ### Step 4: Change the Differential \( dx \) Next, we need to find \( dx \) in terms of \( dt \). The relationship is given by: \[ dx = \frac{2}{1+t^2} dt. \] ### Step 5: Substitute \( dx \) into the Integral Now substituting \( dx \) into the integral: \[ I = \int \frac{2}{1+t^2} \cdot \frac{1+t^2}{4t + 4 + 2t^2} dt = \int \frac{2}{4t + 4 + 2t^2} dt. \] ### Step 6: Factor Out Constants Factoring out constants in the denominator gives: \[ I = \int \frac{1}{2t^2 + 4t + 4} dt. \] ### Step 7: Complete the Square Completing the square for the quadratic in the denominator: \[ 2t^2 + 4t + 4 = 2(t^2 + 2t + 2) = 2\left((t+1)^2 + 1\right). \] ### Step 8: Substitute Back into the Integral Thus, we have: \[ I = \int \frac{1}{2\left((t+1)^2 + 1\right)} dt = \frac{1}{2} \int \frac{1}{(t+1)^2 + 1} dt. \] ### Step 9: Recognize the Standard Integral This integral is of the form: \[ \int \frac{1}{u^2 + a^2} du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C. \] Here, \( u = t + 1 \) and \( a = 1 \). Therefore, \[ I = \frac{1}{2} \cdot \frac{1}{1} \tan^{-1}(t + 1) + C = \frac{1}{2} \tan^{-1}(t + 1) + C. \] ### Step 10: Substitute Back for \( t \) Recall that \( t = \tan\left(\frac{x}{2}\right) \): \[ I = \frac{1}{2} \tan^{-1}\left(\tan\left(\frac{x}{2}\right) + 1\right) + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{2 \sin x + \cos x + 3} = \frac{1}{2} \tan^{-1}\left(\tan\left(\frac{x}{2}\right) + 1\right) + C. \]

To evaluate the integral \[ I = \int \frac{dx}{2 \sin x + \cos x + 3}, \] we will use the substitution \( t = \tan\left(\frac{x}{2}\right) \). This substitution will help us express \( \sin x \) and \( \cos x \) in terms of \( t \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(dx)/((cosx-sinx))

Evaluate the following integrals: inte^(x)(sinx+cosx)dx

Evaluate the following integrals: int(1+sinx)/(sin x(1+cosx))dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int(dx)/((3cosx+4sinx))

Evaluate the following integrals: int(cos2x)/(cosx)dx

Evaluate the following integral: int_0^pi(sinx)/(sinx+cosx)dx

Evaluate the following integral: int_0^pi1/(3+2sinx+cosx)dx

Evaluate the following integrals: inte^(x)((cosx+sinx)/(cos^(2)x))dx

RS AGGARWAL-METHODS OF INTEGRATION -Exercise 13B
  1. Evaluate the following integrals: intsin^(3)xcosxdx

    Text Solution

    |

  2. Evaluate the following integrals: intsec^(4)dx

    Text Solution

    |

  3. Evaluate the following integrals: intcos^3xsin^(4)dx

    Text Solution

    |

  4. Evaluate the following integrals: intcos^(4)xsin^(3)xdx

    Text Solution

    |

  5. Evaluate the following integrals: intsin^(2//3)xcos^(3)xdx

    Text Solution

    |

  6. Evaluate the following integrals: intcos^(3//5)xsin^(3)xdx

    Text Solution

    |

  7. Evaluate: intcos e c^4\ 2x\ dx

    Text Solution

    |

  8. Evaluate the following integrals: int(cos2x)/(cosx)dx

    Text Solution

    |

  9. Evaluate the following integrals: int(cosx)/(cos(x+alpha))dx

    Text Solution

    |

  10. Evaluate the following integrals: intcos^(3)xsin2xdx

    Text Solution

    |

  11. Evaluate the following integrals: int(cos^(9)x)/(sinx)dx

    Text Solution

    |

  12. Evaluate the following integrals: intcos^(4)2xdx

    Text Solution

    |

  13. Evaluate the following integrals: int(sin^(2)x)/((1+cosx)^(2))dx

    Text Solution

    |

  14. Evaluate the following integrals: int(dx)/((3cosx+4sinx))

    Text Solution

    |

  15. Evaluate the following integrals: int(dx)/((acosx+bsinx)^(2)),agt0an...

    Text Solution

    |

  16. Evaluate the following integrals: int(dx)/((cosx-sinx))

    Text Solution

    |

  17. Evaluate the following integrals: int(2tanx-3cotx)^(2)dx

    Text Solution

    |

  18. Evaluate the following integrals: intsinxsin2xsin3x

    Text Solution

    |

  19. Evaluate the following integrals: int((1-cotx)/(1+cotx))dx

    Text Solution

    |

  20. Evaluate the following integrals: int(dx)/((2sinx+cosx+3))

    Text Solution

    |