Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(x)/((1+sinx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral in a different form: \[ I = \int \frac{x}{1 + \sin x} \, dx = \int \frac{x \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin x} \, dx \] ### Step 2: Use the Identity Using the identity \( 1 + \sin x = 1 + \cos\left(\frac{\pi}{2} - x\right) \), we can rewrite the integral as: \[ I = \int \frac{x}{1 + \cos\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Apply the Half Angle Formula Using the formula \( 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \): \[ 1 + \sin x = 2 \cos^2\left(\frac{\pi/4 - x/2}{2}\right) \] So we rewrite the integral: \[ I = \int \frac{x}{2 \cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)} \, dx \] ### Step 4: Factor Out the Constant Factoring out the constant: \[ I = \frac{1}{2} \int x \sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx \] ### Step 5: Integration by Parts Let \( u = x \) and \( dv = \sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx \). Then, \( du = dx \) and we need to find \( v \): \[ v = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \] ### Step 6: Apply Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \frac{1}{2} \left[ x \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) - \int \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx \right] \] ### Step 7: Evaluate the Remaining Integral To evaluate \( \int \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx \), we can use the substitution \( t = \frac{\pi}{4} - \frac{x}{2} \): \[ dx = -2 \, dt \] Thus, \[ \int \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \, dx = -2 \int \tan(t) \, dt = -2 \log|\sec(t)| + C \] ### Step 8: Substitute Back Substituting back for \( t \): \[ -2 \log|\sec\left(\frac{\pi}{4} - \frac{x}{2}\right)| + C \] ### Final Answer Combining everything, we have: \[ I = \frac{1}{2} \left[ x \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) + 2 \log|\sec\left(\frac{\pi}{4} - \frac{x}{2}\right)| \right] + C \] ### Final Result Thus, the evaluated integral is: \[ I = -x \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) + \log|\sec\left(\frac{\pi}{4} - \frac{x}{2}\right)| + C \]

To evaluate the integral \( I = \int \frac{x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral in a different form: \[ I = \int \frac{x}{1 + \sin x} \, dx = \int \frac{x \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(dx)/((cosx-sinx))

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int(cos^(9)x)/(sinx)dx

Evaluate the following integrals: inte^(x)(sinx+cosx)dx

Evaluate the following integrals: int(x)/((x+1)^(2))dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals: int (dx)/(1-sin^(2)x)

Evaluate the following integrals: int(dx)/((2sinx+cosx+3))

Evaluate the following integrals: int(dx)/((3cosx+4sinx))

Evaluate the following integrals: int(cos x)/(1-cos x)dx

RS AGGARWAL-METHODS OF INTEGRATION -Exercise 13C
  1. Evaluate the following integrals: int(log(logx))/(x)dx

    Text Solution

    |

  2. Evaluate the following integrals: intlog(2+x^(2))dx

    Text Solution

    |

  3. Evaluate the following integrals: int(x)/((1+sinx))dx

    Text Solution

    |

  4. Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

    Text Solution

    |

  5. Evaluate the following integrals: inte^(x)cos2xcos4xdx

    Text Solution

    |

  6. Evaluate the following integrals: inte^(sqrt(x))dx

    Text Solution

    |

  7. Evaluate the following integrals: inte^(sinx)sin2xdx

    Text Solution

    |

  8. Evaluate the following integrals: int(xsin^(-1)x)/(sqrt(1-x^(2)))dx

    Text Solution

    |

  9. Evaluate the following integrals: int(x^(2)tan^(-1)x)/((1+x^(2)))dx

    Text Solution

    |

  10. Evaluate the following integrals: int(log(x+2))/((x+2)^(2))dx

    Text Solution

    |

  11. Evaluate the following integrals: intxsin^(-1)xdx

    Text Solution

    |

  12. Evaluate the following integrals: intxcos^(-1)xdx

    Text Solution

    |

  13. Evaluate the following integrals: intcot^(-1)xdx

    Text Solution

    |

  14. Evaluate the following integrals: intxcot^(-1)xdx

    Text Solution

    |

  15. Evaluate the following integrals: intx^(2)cot^(-1)xdx

    Text Solution

    |

  16. Evaluate the following integrals: intsin^(-1)sqrt(x)dx

    Text Solution

    |

  17. Evaluate the following integrals: intcos^(-1)sqrt(x)dx

    Text Solution

    |

  18. Evaluate the following integrals: intcos^(-1)(4x^(3)-3x)dx

    Text Solution

    |

  19. Evaluate the following integrals: intcos^(-1)((1-x^(2))/(1+x^(2)))dx

    Text Solution

    |

  20. Evaluate the following integrals: inttan^(-1)((2x)/(1-x^(2)))dx

    Text Solution

    |