Home
Class 12
MATHS
Evaluate the following integrals: ints...

Evaluate the following integrals:
`intsin^(-1)sqrt(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin^{-1}(\sqrt{x}) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( \sqrt{x} = \sin(t) \). Then, we have: \[ x = \sin^2(t) \quad \text{and} \quad dx = 2\sin(t)\cos(t) \, dt = \sin(2t) \, dt \] ### Step 2: Change of Variables Substituting \( \sqrt{x} \) and \( dx \) into the integral, we get: \[ \int \sin^{-1}(\sqrt{x}) \, dx = \int \sin^{-1}(\sin(t)) \cdot \sin(2t) \, dt \] Since \( \sin^{-1}(\sin(t)) = t \) for \( t \) in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), we can simplify the integral to: \[ \int t \sin(2t) \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts. Let: - \( u = t \) (thus \( du = dt \)) - \( dv = \sin(2t) \, dt \) (thus \( v = -\frac{1}{2}\cos(2t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int t \sin(2t) \, dt = -\frac{1}{2} t \cos(2t) - \int -\frac{1}{2} \cos(2t) \, dt \] ### Step 4: Evaluate the Remaining Integral Now we need to evaluate \( \int \cos(2t) \, dt \): \[ \int \cos(2t) \, dt = \frac{1}{2} \sin(2t) \] Thus, substituting back, we get: \[ \int t \sin(2t) \, dt = -\frac{1}{2} t \cos(2t) + \frac{1}{4} \sin(2t) + C \] ### Step 5: Back Substitute Now we need to substitute back \( t = \sin^{-1}(\sqrt{x}) \): \[ \int \sin^{-1}(\sqrt{x}) \, dx = -\frac{1}{2} \sin^{-1}(\sqrt{x}) \cos(2\sin^{-1}(\sqrt{x})) + \frac{1}{4} \sin(2\sin^{-1}(\sqrt{x})) + C \] ### Step 6: Simplifying the Expression Using the identities: - \( \cos(2\sin^{-1}(\sqrt{x})) = 1 - 2\sin^2(\sin^{-1}(\sqrt{x})) = 1 - 2x \) - \( \sin(2\sin^{-1}(\sqrt{x})) = 2\sin(\sin^{-1}(\sqrt{x}))\cos(\sin^{-1}(\sqrt{x})) = 2\sqrt{x}\sqrt{1-x} \) We can rewrite the integral as: \[ \int \sin^{-1}(\sqrt{x}) \, dx = -\frac{1}{2} \sin^{-1}(\sqrt{x})(1 - 2x) + \frac{1}{4}(2\sqrt{x}\sqrt{1-x}) + C \] ### Final Answer Thus, the final result is: \[ \int \sin^{-1}(\sqrt{x}) \, dx = -\frac{1}{2} \sin^{-1}(\sqrt{x})(1 - 2x) + \frac{1}{2}\sqrt{x(1-x)} + C \]

To evaluate the integral \( \int \sin^{-1}(\sqrt{x}) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( \sqrt{x} = \sin(t) \). Then, we have: \[ x = \sin^2(t) \quad \text{and} \quad dx = 2\sin(t)\cos(t) \, dt = \sin(2t) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: intcos^(-1)sqrt(x)dx

Evaluate the following integrals: int(sin^(-1) sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate the following integrals: int_0^a(sin)^(-1)sqrt(x/(a+x))dx

Evaluate the following integrals: int(xsin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate the following integrals: intsin^(3)xcosxdx

Evaluate the following integrals: int(1)/(sqrt(x))dx (ii) int(1)/(x^(3))dx( iii) int a^(3)(log)_(a)x

Evaluate the following integrals: intsin^(7)(3-2x)dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals: intsin6xcosdx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

RS AGGARWAL-METHODS OF INTEGRATION -Exercise 13C
  1. Evaluate the following integrals: intxcot^(-1)xdx

    Text Solution

    |

  2. Evaluate the following integrals: intx^(2)cot^(-1)xdx

    Text Solution

    |

  3. Evaluate the following integrals: intsin^(-1)sqrt(x)dx

    Text Solution

    |

  4. Evaluate the following integrals: intcos^(-1)sqrt(x)dx

    Text Solution

    |

  5. Evaluate the following integrals: intcos^(-1)(4x^(3)-3x)dx

    Text Solution

    |

  6. Evaluate the following integrals: intcos^(-1)((1-x^(2))/(1+x^(2)))dx

    Text Solution

    |

  7. Evaluate the following integrals: inttan^(-1)((2x)/(1-x^(2)))dx

    Text Solution

    |

  8. Evaluate the following integrals: inttan^(-1)((3x-x^(3))/(1-3x^(2)))...

    Text Solution

    |

  9. Evaluate the following integrals: int(sin^(-1)x)/(x^(2))dx

    Text Solution

    |

  10. Evaluate the following integrals: int(tanxsec^(2)x)/((1-tan^(2)x))dx

    Text Solution

    |

  11. Evaluate the following integrals: inte^(3x)sin4xdx

    Text Solution

    |

  12. Evaluate the following integrals: inte^(2x)sinxdx

    Text Solution

    |

  13. Evaluate the following integrals: inte^(2x)sinxcosxdx

    Text Solution

    |

  14. Evaluate the following integrals: inte^(2x)cos(3x+4)dx

    Text Solution

    |

  15. Evaluate the following integrals: inte^(-x)cosxdx

    Text Solution

    |

  16. Evaluate the following integrals: inte^(x)(sinx+cosx)dx

    Text Solution

    |

  17. Evaluate the following integrals: inte^(x)(cotx-"cosec"^(2)x)dx

    Text Solution

    |

  18. Evaluate the following integrals: inte^(x)secx(1+tanx)dx

    Text Solution

    |

  19. Evaluate the following integrals: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))d...

    Text Solution

    |

  20. inte^(x)(cotx+logsinx)dx=?

    Text Solution

    |