Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(sin^(-1)x)/(x^(2))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(-sin^(1)x)/(x)+log|(1)/(x)-(sqrt(1-x^(2)))/(x)|+C`

Put x=sin t and dx=cos t dt. Then,
`I=intt("cosec"cott)dt=-"cosec"+log|"cosec "t-cott|+C`
`=(-sin^(-1)x)/(x)+log|(1)/(x)-(sqrt(1-x^(2)))/(x)|+C`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integrals: inte^(x)*(x)/((1+x)^(2))dx

Evaluate the following integrals : int(sin^(2)x)/(1+cos x)dx

Evaluate the following integrals: int(sin^(2)x)/((1+cosx)^(2))dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int (dx)/(1-sin^(2)x)

Evaluate the following integrals: int frac{sin^(-1)x}{(1-x^2)^(1backslash2)}dx

Evaluate the following integral : int sin^(2)((x)/(2))dx

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following integrals: inte^(x)(logx+(1)/(x^(2)))dx