Home
Class 12
MATHS
Evaluate the following integrals: int{...

Evaluate the following integrals:
`int{log(logx)+(1)/((logx)^(2))}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx, \] we will use a substitution method. Let's go through the steps: ### Step 1: Substitution Let \( t = \log x \). Then, we have: \[ dx = e^t dt. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral gives: \[ \int \left( \log(t) + \frac{1}{t^2} \right) e^t dt. \] ### Step 3: Distributing \( e^t \) We can distribute \( e^t \) across the terms in the integral: \[ \int \log(t) e^t dt + \int \frac{1}{t^2} e^t dt. \] ### Step 4: Solve the First Integral The first integral \( \int \log(t) e^t dt \) can be solved using integration by parts. Let: - \( u = \log(t) \) → \( du = \frac{1}{t} dt \) - \( dv = e^t dt \) → \( v = e^t \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int \log(t) e^t dt = \log(t) e^t - \int e^t \cdot \frac{1}{t} dt. \] ### Step 5: Solve the Second Integral The second integral \( \int \frac{1}{t^2} e^t dt \) can also be solved using integration by parts. Let: - \( u = \frac{1}{t} \) → \( du = -\frac{1}{t^2} dt \) - \( dv = e^t dt \) → \( v = e^t \) Using integration by parts again: \[ \int \frac{1}{t^2} e^t dt = \frac{1}{t} e^t - \int e^t \cdot \left(-\frac{1}{t^2}\right) dt = \frac{1}{t} e^t + \int \frac{1}{t^2} e^t dt. \] ### Step 6: Combine Results Now, combining both integrals, we have: \[ \int \left( \log(t) + \frac{1}{t^2} \right) e^t dt = \log(t) e^t - \int \frac{1}{t} e^t dt + \frac{1}{t} e^t + C. \] ### Step 7: Substitute Back Finally, substitute back \( t = \log x \): \[ = \log(\log x) e^{\log x} - \int \frac{1}{\log x} e^{\log x} dx + \frac{1}{\log x} e^{\log x} + C. \] Since \( e^{\log x} = x \), we can write: \[ = \log(\log x) x - \int \frac{x}{\log x} dx + \frac{x}{\log x} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx = x \log(\log x) - \int \frac{x}{\log x} dx + \frac{x}{\log x} + C. \]

To evaluate the integral \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx, \] we will use a substitution method. Let's go through the steps: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

Evaluate the following integrals: int(log(logx))/(x)dx

Evaluate the following integrals: int e^(-logx)dx

Evaluate the following integrals: int(logx)/(x^(n))dx

Evaluate the following integrals: int(logx)/((1+logx)^(2))dx

Evaluate the following integral: int_0^oo(logx)/(1+x^2)dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integral: int_1^3(cos(logx))/x dx

Evaluate the following integrals: inte^(x)(logx+(1)/(x^(2)))dx

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

RS AGGARWAL-METHODS OF INTEGRATION -Exercise 13C
  1. Evaluate: inte^x\ ((sin4x-4)/(1-cos4x))\ dx

    Text Solution

    |

  2. Evaluate the following integrals: int(e^(x)[sqrt(1-x^(2))sin^(-1)x+1...

    Text Solution

    |

  3. Evaluate the following integrals: inte^(x)((1+xlogx)/(x))dx

    Text Solution

    |

  4. Evaluate the following integrals: inte^(x)*(x)/((1+x)^(2))dx

    Text Solution

    |

  5. Evaluate the following integrals: inte^(x)((x-1))/((x+1)^(3))dx

    Text Solution

    |

  6. Evaluate the following integrals: inte^(x)((2-x))/((1-x)^(2))dx

    Text Solution

    |

  7. Evaluate the following integrals: inte^(x)*((x-3))/((x-1)^(3))dx

    Text Solution

    |

  8. Evaluate the following integrals: inte^(3x)((3x-1)/(9x^(2)))dx

    Text Solution

    |

  9. Evaluate the following integrals: int((x+1))/((x+2)^(2))e^(x)dx

    Text Solution

    |

  10. int(x e^(2x))/((1+2x)^2)dx

    Text Solution

    |

  11. Evaluate the following integrals: inte^(2x)((2x-1)/(4x^(2)))dx

    Text Solution

    |

  12. Evaluate the following integrals: inte^(x)(logx+(1)/(x^(2)))dx

    Text Solution

    |

  13. Evaluate the following integrals: int(logx)/((1+logx)^(2))dx

    Text Solution

    |

  14. int[sin(logx)+cos(logx)]dx

    Text Solution

    |

  15. Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

    Text Solution

    |

  16. Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

    Text Solution

    |

  17. Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-...

    Text Solution

    |

  18. Evaluate the following integrals: int5^(5^(5^(x)))*5^(5^(x))*5^(x)dx

    Text Solution

    |

  19. Evaluate the following integrals: inte^(2x)((1+sin2x)/(1+cos2x))dx

    Text Solution

    |

  20. Evaluate the following integrals: inte^(2x)((1+sin2x)/(1+cos2x))dx

    Text Solution

    |