Home
Class 12
MATHS
If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc...

If `A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] "and B"= [(0,c,-b),(-c,0,a),(b,-a,0)]` then the product AB is equal to

A

O

B

A

C

B

D

I

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of matrices \( A \) and \( B \), we will perform matrix multiplication step by step. Given: \[ A = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] The product \( AB \) will be calculated using the formula for matrix multiplication, where the element in the \( i^{th} \) row and \( j^{th} \) column of the product is obtained by taking the dot product of the \( i^{th} \) row of \( A \) and the \( j^{th} \) column of \( B \). ### Step 1: Calculate \( (AB)_{11} \) \[ (AB)_{11} = a^2 \cdot 0 + ab \cdot (-c) + ac \cdot b = 0 - abc + abc = 0 \] ### Step 2: Calculate \( (AB)_{12} \) \[ (AB)_{12} = a^2 \cdot c + ab \cdot 0 + ac \cdot (-a) = a^2c + 0 - a^2c = 0 \] ### Step 3: Calculate \( (AB)_{13} \) \[ (AB)_{13} = a^2 \cdot (-b) + ab \cdot a + ac \cdot 0 = -a^2b + a^2b + 0 = 0 \] ### Step 4: Calculate \( (AB)_{21} \) \[ (AB)_{21} = ab \cdot 0 + b^2 \cdot (-c) + bc \cdot b = 0 - b^2c + b^2c = 0 \] ### Step 5: Calculate \( (AB)_{22} \) \[ (AB)_{22} = ab \cdot c + b^2 \cdot 0 + bc \cdot (-a) = abc + 0 - abc = 0 \] ### Step 6: Calculate \( (AB)_{23} \) \[ (AB)_{23} = ab \cdot (-b) + b^2 \cdot a + bc \cdot 0 = -ab^2 + ab^2 + 0 = 0 \] ### Step 7: Calculate \( (AB)_{31} \) \[ (AB)_{31} = ac \cdot 0 + bc \cdot (-c) + c^2 \cdot b = 0 - bc^2 + bc^2 = 0 \] ### Step 8: Calculate \( (AB)_{32} \) \[ (AB)_{32} = ac \cdot c + bc \cdot 0 + c^2 \cdot (-a) = ac^2 + 0 - ac^2 = 0 \] ### Step 9: Calculate \( (AB)_{33} \) \[ (AB)_{33} = ac \cdot (-b) + bc \cdot a + c^2 \cdot 0 = -acb + acb + 0 = 0 \] ### Final Result Combining all the calculated elements, we find that: \[ AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] This is a null matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 1 ( Single Correct Answer Type Questions ) )
  1. If A and B two are 3xx3 matrices then which one of the following is n...

    Text Solution

    |

  2. If A = ((costheta,-sintheta),(sintheta,costheta)) then

    Text Solution

    |

  3. If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] "and B"= [(0,c,-b),(-...

    Text Solution

    |

  4. If A is an invertible matrix and B is an orthogonal matrix of the orde...

    Text Solution

    |

  5. Prove that the product of the matrices [[cos^2alpha, cosalphasinalpha]...

    Text Solution

    |

  6. If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

    Text Solution

    |

  7. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  8. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  9. If A and B are two skew symmetric matrices of order n then

    Text Solution

    |

  10. Which of the following statements is false :

    Text Solution

    |

  11. If A and B are symmetric matrices then A B-B A is a Symmetric Matrix ...

    Text Solution

    |

  12. Let A and B be two 3xx3 matrices such that A+B = 2 B' and 3A + 2B= I ...

    Text Solution

    |

  13. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  14. If A is skew-symmetric and B=(I-A)^(-1)(I+A), then B is

    Text Solution

    |

  15. Let a(n)=3^(n)+5^(n), nin N and let A=((a(n),a(n+1),a(n+2)),(a(n+1)...

    Text Solution

    |

  16. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  17. Suppose ABC is a triangle with sides a,b ,c and semiperimeter s. Then ...

    Text Solution

    |

  18. The number of matrices A = [(a,b),(c,d)] ( where a,b,c,din R ) such...

    Text Solution

    |

  19. Let A be a 3xx3 matrix with entries from the set of numbers, If the sy...

    Text Solution

    |

  20. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |